

May 26, 2021

MAX-2019012.00

Mr. John Cashell, Town Planner Attn: Planning Board Town Hall 1 Library Street Georgetown, MA 01833

SUBJECT: Response to Peer Review & Planning Board Comments Proposed Transfer Station Carleton Drive, Georgetown, MA

Dear Mr. Cashell:

Greenman-Pedersen Inc. (GPI) previously prepared a *Traffic Impact and Access Study*¹ (TIAS) and *Updated Traffic Impact Analysis*² submitted to the Planning Board for the proposed transfer station to be located on Carleton Drive in Georgetown, Massachusetts. Following review of these documents, the Town's traffic peer review consultant, Ron Müller & Associates (RMA) requested that additional traffic count data be collected along Carleton Drive to obtain existing daily vehicle trips and truck trips. In addition, RMA requested that GPI collect empirical trip generation data at similar waste & recycling transfer facilities with a capacity of over 500 tons per day to compare this data to the trip generation estimates contained in the *Updated TIAS*. GPI provided a summary of this additional data to the Planning Board in a letter dated April 19, 2021. RMA and the Planning Board provided additional comments relative to this data during a Planning Board meeting on April 28, 2021. GPI has prepared this letter to respond to the comments and questions raised by RMA and the Planning Board during this meeting.

Carleton Drive Traffic Counts

At the request of the Town's peer review consultant, RMA, GPI collected an ATR count on Carleton Drive just east of Route 133 on Friday, March 19, 2021 to Thursday, March 25, 2019 to obtain a full week of count data in order to estimate existing daily weekday and weekend traffic volumes along Carleton Drive. The raw data resulting from this traffic count was summarized in Table 1 of GPI's April 28, 2021 *Response to Comments* letter. However, the volumes had not been adjusted to account for seasonal variation or impacts due to COVID-19. Therefore, GPI has provided an updated summary of the existing traffic volumes that include adjustments for seasonal variation and COVID-19.

Based on MassDOT historic traffic counts, as summarized in the *Updated TIA*, traffic volumes in the surrounding area in March are typically 10.8 percent lower than average-month conditions. Therefore, the raw March 2021 traffic volumes were increased by 10.8 percent to represent average-month conditions. The seasonally adjusted traffic volumes are summarized in Table 1.

To determine whether any adjustment to the traffic volumes was needed to account for COVID-19, GPI compared the seasonally adjusted traffic volumes collected in March 2021 to the seasonally adjusted volumes collected in February 2019 (pre-COVID) during the weekday AM (6:00 AM – 9:00 AM), weekday PM (3:00 PM

¹ Traffic Impact and Access Study – Proposed Transfer Station, Carleton Drive – Georgetown, Massachusetts; Greenman-Pedersen, Inc.; March 2019.

² Updated Traffic Impact Analysis, Proposed Transfer Station, Carleton Drive, Georgetown, Massachusetts; Greenman-Pedersen, Inc.; April 26, 2019.

– 6:00 PM), and Saturday midday (11:00 AM – 1:00 PM) peak periods to identify whether any reduction in traffic volumes occurred due to COVID-19. The traffic volumes during the weekday AM peak period were higher in March 2021 (post COVID) than in February 2019 (pre-COVID); however, the volumes during the weekday PM and Saturday midday peak hours were lower in March 2021 (post COVID) than in February 2019 (pre-COVID). This may be an indication that the time of day when the trips were occurring shifted earlier in the day following COVID-19. On average, the traffic volumes the volumes post-COVID (March 2021) were 28.8 percent lower than the volumes collected pre-COVID (February 2019). Therefore, GPI increased the seasonally adjusted March 2021 traffic volumes by 28.8 percent to account for impacts due to COVID-19.

The detailed calculations and adjustments are provided as an Attachment to this letter and the resulting traffic volumes with all seasonal and COVID adjustments are summarized in Table 1 below. It should be noted that March 2021 adjusted traffic were higher than the February 2019 adjusted traffic volumes during the weekday AM and Saturday midday peak hours; however, the February 2019 volumes were higher than the March 2021 adjusted volumes during the weekday PM peak hour. Therefore, the weekday PM peak hour traffic volumes shown in Table 1 below reflect the more conservative (higher) February 2019 counts.

TABLE 1 Existing Traffic Volume Summary

Location/Time Period	Daily	Peak Hour	% Heavy
	Volume (vpd) ^a	Volume (vph) ^b	Vehicles ^c
Carleton Drive east of Route 133: Weekday Daily Weekday AM Peak Hour Weekday PM Peak Hour Saturday Daily Saturday Midday Peak Hour	542 206 	 49 54 24	9% 11% 2% 0% 0%

^a In vehicles per day.

^b In vehicles per hour.

^c Percentage of daily traffic representing single-unit or multi-unit heavy vehicles.

Empirical Trip Generation Data

At the request of the Town's peer review consultant, RMA, GPI previously collected empirical trip generation counts at two other transfer facilities with capacities of over 500 tons per day to verify the accuracy of the trip generation estimates contained in GPI's April 2019 *Updated TIA*. These sites included the Casella Waste facility on Hardscrabble Road in Auburn, MA, which has a capacity of 650 tons per day, and the Covanta Semass facility on Cranberry Highway in Wareham, MA, which has a capacity of 1,200 tons per day. The results of these counts were summarized in GPI's April 19, 2021 *Response to Comments* letter, which contained trip rates per tonnage capacity obtained at each of the two facilities studied. RMA recommended that GPI obtain additional information on the actual tonnage processed on each of the days counts at each of the other facilities in order to estimate a trip rate per tonnage processed to verify that GPI's trip estimates for the proposed Georgetown location represent a worst-case scenario. Therefore, the Applicant contacted Covanta Semass and Casella to obtain information on the tonnage of material received on each of the days that traffic counts were collected. Based on this information, the facilities operated at approximately 66 to 84 percent capacity on the days that traffic counts were performed. The detailed information on the tonnage received on each day is provided as an Attachment to this letter.

GPI estimated trip generation rates per tonnage received at the Auburn and Wareham facilities for each of the following time periods:

- Weekday Daily
- Weekday AM Peak Hour
- Weekday PM Peak Hour

These trip rates were then applied to the proposed 500-ton capacity of the G Mello facility in Georgetown to estimate the trips generated by G Mello on a maximum capacity day. Table 2 provides a summary of the resulting trip rates and site-generated trip estimates. The detailed count data is provided as an Attachment to this letter.

TABLE 2 Empirical Trip Generation Summary

		Estimated Georgeto	
Time Period / Direction	Average Empirical Trip Rate per Tonnage Received ^a	Based on Empirical Trip Rates ^b	Georgetown (From TIAS) °
Weekday Daily			
Total Trips	1.260	630	890
Truck Trips	0.567	284	250
Weekday AM Peak Hour			
Enter	0.026	13	58
<u>Exit</u>	<u>0.027</u>	<u>13</u>	<u>58</u>
Total	0.053	26	116
Weekday PM Peak Hour			
Enter	0.006	3	0
<u>Exit</u>	<u>0.008</u>	<u>4</u>	<u>6</u>
Total	0.014	7	6

^a Average trip rate per tonnage received estimated from ATR counts collected March 18 – 22, 2021 at Casella Waste in Auburn, MA and ATR counts collected March 18 – 19, 2021 at Covanta Semass in Wareham, MA

^b Trips estimated using average trip rates per tonnage received from Casella Waste in Auburn, MA and Covanta Semass in Wareham, MA

^c Site-generated trips estimated using counts from existing G Mello facility in Georgetown, combined with Applicantprovided data on anticipated truck trip increases (Included in GPI's April 2019 Updated TIA).

As shown in Table 2, the trip rates based on total trips per tonnage received obtained from the Auburn and Wareham facilities are significantly lower than those previously estimated in GPI's April 2019 *Updated TIAS* for the proposed G Mello facility. GPI previously estimated the proposed facility to generate 890 total vehicle trips on a typical weekday, while the rates obtained from the Auburn and Wareham facilities suggest that the proposed G Mello facility would generate only 630 daily vehicle trips. One of the main reasons for this difference may be the volume of residential waste received by the Auburn and Wareham facilities in comparison to the Georgetown facility. Approximately 67 percent of the vehicles generated by the Auburn facility were from truck trips due to a higher percentage of commercial waste received at this facility and lower volume of residential waste in comparison to the proposed Georgetown location. Approximately 31 percent of the vehicles generated by the Wareham facility were truck trips, which is equivalent to the percentage trucks anticipated at the proposed Georgetown facility.

It should be noted that *"truck trips"* refers to commercial construction and landscape vehicles, box trucks, rolloff container trucks, packer trucks, and tractor-trailer / transfer trailer trucks. Not all of the *truck trips* generated by the facility will be tractor-trailer trucks. GPI has estimated that the proposed G Mello facility in Georgetown will generate up to 20 transfer trailers (40 trips) on a peak weekday, which represents approximately five percent of the total trips generated by the facility.

Tonnage Per Vehicle

In addition, Planning Board Member Bruce Fried requested that GPI also provide a table summarizing the tons per vehicle generated at both the Auburn and Wareham locations in comparison to that estimated for the proposed Georgetown location. Table 3 provides a summary of the tonnage processed each day at each of the facilities in comparison to the number of vehicle trips entering each facility on the same day. This data was used to estimate the tonnage per vehicle as requested by Mr. Fried. It should be noted that the number of vehicle trips entering each facility includes employee trips, as well as transfer trailers that would not be bringing materials to the site. It was not possible to separate these trips from other entering trips based on the counts that were collected. Therefore, the tonnage per vehicle ratios may appear artificially low. However, to provide an appropriate comparison to the proposed Georgetown facility, GPI also included the employee trips and transfer trailer trips in the "entering vehicle" count when comparing the tonnage to number of entering vehicles. Table 3 provides a summary of the resulting tonnage per vehicle from all three sites.

TABLE 3 Tonnage per Entering Vehicle Summary

	Auburn Braintree / Wareham				Average		
Location	3/18/2021	3/19/2021	3/22/2021	3/18/2021	3/19/2021	Average Empirical	Georgetown
Tonnage Processed	490	516	643	797	1012		500
Daily Entering Vehicles	221	195	222	861	893		445
Tonnage per Vehicle (In)	2.22	2.65	2.90	0.93	1.13	1.96	1.12

As shown in Table 3, the proposed Georgetown facility is anticipated to experience a tonnage per entering vehicle ratio that will be similar to the existing Wareham facility and significantly lower than the existing Auburn facility. This is likely due to the higher volume of residential waste received at the Georgetown facility. As previously noted, approximately 67 percent of the vehicles generated by the Auburn facility represented trucks, which are able to transport a higher tonnage of material per vehicle. The Wareham facility experienced approximately 31 percent truck trips, which is similar to the percentage anticipated for the proposed Georgetown facility.

Pavement Cores

The Applicant previously provided a commitment to provide a pavement mill and overlay of Carleton Drive as necessary to repair the roadway surface and to accommodate the additional traffic generated by the proposed transfer station. RMA requested that the Applicant conduct pavement cores in three locations along Carleton Drive, spaced between the existing driveways, to assess whether the existing pavement and subbase is adequate to accommodate the additional traffic generated by the proposed facility with only a mill and overlay.

The Applicant retained Miller Engineering & Testing, Inc. (Miller) to conduct pavement cores as part of a subsurface exploration program to assess the adequacy of the roadway. Carleton Drive is approximately 1600 feet long. A total of 11 pavement cores were conducted, spaces at approximately 150 feet apart on alternating sides of the roadway. The detailed *Subsurface Exploration Program and Geotechnical Engineering Evaluation*³ is provided as an Attachment to this letter. The report notes that the existing asphalt pavement is exhibiting symptoms of distress as a result of thermal and age-related shrinkage and subgrade fatigue, and that the existing base course and subbase course soils below the roadway are currently unsuitable to support the anticipated loads and intensities. Based on these findings, Miller recommends full depth reconstruction of the roadway. Table 4 provides a summary of the recommended roadway pavement section based on Miller's report.

TABLE 4Proposed Roadway Pavement Section

Material	Specification	Thickness (Inches)
Asphalt Wearing Course	12.5 mm Superpave Surface Course	2.0
	MHD Mix SSC - 12.5	
Asphalt Binder Course	19.0 mm Superpave Intermediate Course	3.0
	MHD Mix SIC – 190	
Base Course	Dense Graded Crushed Gravel	12.0
	MHD Item M1.03.01	
Subbase Course	Existing Silty Gravel Subgrade or	20.0
	Reclaimed Pavement Borrow (MI.09.0)	

Should you have any questions, or require additional information, please contact me directly at (603) 766-5223.

Sincerely,

GREENMAN-PEDERSEN, INC.

Rebecca L. Brown, P.E. Senior Project Manager

ATTACHMENTS - COVID Adjustment Data, Empirical Trip Rate Calculations, Pavement Evaluation Report

cc: Ron Müller, Ron Müller & Associates Jason Mello, G Mello Disposal Corp. Nancy McCann, McCann & McCann, P.C. Planning Board Members

³ Subsurface Exploration Program and Geotechnical Engineering Evaluation, Proposed Pavement Improvements, Carleton Drive, Georgetown, MA; Miller Engineering & Testing, Inc.; May 21, 2021.

	February 20)19 Volumes		March 202	1 Volumes
					COVID Adjustment (Based
		Seasonally		Seasonally	on Seasonally Adjusted Feb
	Raw Data	Adjusted	Raw Data	Adjusted	2019)
Seasonal Adjustment		16.5%		10.8%	
Weekday AM (6 AM - 9 AM)	73	85	93	103	-17.5%
Peak Hour (7:30 - 8:30 AM)	35	41	44	49	-16.3%
Weekday PM (3 PM - 6 PM)	126	147	76	84	75.0%
Peak Hour (4:45 - 5:45 PM)	46	54	45	50	8.0%
Saturday Midday (11 AM - 1 PM)	28	33	15	17	94.1%
Peak Hour (12:00 - 1:00 PM)	6	7	13	14	-50.0%
			Average COV	ID Adjustment	28.8%
			/Werdge cov		20.070
Weekday Daily Volume			380	421	542
Weekday AM Peak Hour					49
Weekday PM Peak Hour					54

Saturday Daily Volume

Saturday Midday Peak Hour

		Wee	kday Daily Traffic Vol	umes	
	Raw Data (March	Seasonally	Existing Volumes	Site-Generated	
Vehicle Type	2021)	Adjusted	(COVID Adjusted)	Trips	Build Trips
Group 1 (Passenger Cars, Panel Trucks, Pick-Ups)	346	383	493	610	1103
Group 2 (Single-Unit Trucks, Small Contractor, Landscape)	24	27	35	100	135
Group 3 (Multi-Unit Trucks, Packers, Roll-Offs, Transfer Trailers)	10	11	14	180	194
TOTAL	380	421	542	890	1432

Trip Generation Comparison - Empirical Data (Based on Tonnage Received)

			Estimated Total Trips					
Time Period / Direction	3/18/2021	Auburn 3/19/2021	3/22/2021	Braintree 3/18/2021	/ Wareham 3/19/2021	Average	Georgetown (From TIAS)	Average Empirical Rates
Weekday Daily								
Total Trips	0.914	0.768	0.714	2.149	1.755	1.260	890	630
Truck Trips	0.620	0.529	0.471	0.701	0.514	0.567	250	284
Weekday AM Peak Hour								
Enter	0.047	0.016	0.031	0.029	0.008	0.026	58	13
<u>Exit</u>	0.039	0.025	0.033	0.024	<u>0.013</u>	<u>0.027</u>	<u>58</u>	<u>13</u>
Total	0.086	0.041	0.064	0.053	0.021	0.053	116	27
Weekday PM Peak Hour								
Enter	0.004	0.008	0.011	0.003	0.004	0.006	0	3
<u>Exit</u>	0.004	<u>0.010</u>	<u>0.019</u>	<u>0.003</u>	<u>0.005</u>	<u>0.008</u>	<u>6</u>	<u>4</u>
Total	0.008	0.018	0.030	0.006	0.009	0.014	6	7

Percentage Truck Trips

Weekday

45%

28%

Casella Waste - Hardscrabble Road, Auburn, MA

Capacity =

650 tons / day

Thu	ırsday 3/18	/21	Fr	iday 3/19/2	21	Мо	onday 3/22/	21
Enter (NB)	Exit (SB)	TOTAL	Enter (NB)	Exit (SB)	TOTAL	Enter (NB)	Exit (SB)	TOTAL
1	1	2	0	0	0	0	0	0
7	11	18	2	0	2	0	0	0
2	1	3	0	0	0	7	0	7
3	1	4	4	1	5	1	1	2
6	1	7	12	5	17	2	1	3
8	9	17	8	9	17	4	2	6
13	14	27	5	6	11	8		13
18	11			8	16	17		34
						1		37
								46
						-		29
								46
						-		43
								42
						1		55 40
						-		28
								12
								4
								7
2	0	2	0	0	0	1	2	3
0	1	1	0	0	0	0	0	0
0	7	7	1	1	2	0	0	0
0	2	2	0	0	0	1	1	2
221	227	448	195	201	396	222	237	459
152	152	304	132	141	273	141	162	303
23	19	42	8	13	21	20	21	41
2	2	4	4	5	9	7	12	19
acity								
	0.349	0.689	0.3	0.309	0.609	0.342	0.365	0.707
0.035	0.029	0.065					0.032	0.063
0.003	0.003	0.006	0.006	0.008	0.014	0.011	0.018	0.029
acity		0.468			0.42			0.466
						1		
	490			516		[643	
	490 75%			516 79%			643 99%	
aived								
eived	75%	0.014	0.270	79%	0 760	0.245	99%	0.714
0.451	75% 0.463	0.914	0.378	79% 0.39	0.768	0.345	99% 0.369	0.714
0.451 0.047	75% 0.463 0.039	0.086	0.016	79% 0.39 0.025	0.041	0.031	99% 0.369 0.033	0.064
0.451	75% 0.463			79% 0.39			99% 0.369	
	7 2 3 6 8 13 18 18 12 20 26 20 33 11 14 3 0 2 0 0 0 0 221 152 23 2 23 2 2 acity 0.34 0.035 0.003 	1 1 7 11 2 1 3 1 6 1 8 9 13 14 18 11 12 11 20 18 26 26 20 20 33 29 11 19 14 15 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 2 0 0 2 0 0 7 0 2 23 19 2 2 acity 0.034 0.349 0.003 0.003	1 1 2 7 11 18 2 1 3 3 1 4 6 1 7 8 9 17 13 14 27 18 11 29 18 21 39 12 11 23 20 18 38 26 26 52 20 20 40 33 29 62 11 19 30 14 15 29 3 5 8 1 2 3 3 2 5 0 0 0 2 0 2 1 1 1 1 2 3 3 2 5 0 0 2 2 2 4	1 1 2 0 7 11 18 2 2 1 3 0 3 1 4 4 6 1 7 12 8 9 17 8 13 14 27 5 18 11 29 8 13 14 27 5 18 11 29 8 13 14 27 5 18 11 29 8 12 11 23 17 20 18 38 18 26 26 52 22 20 20 40 26 33 29 62 26 11 19 30 12 14 15 29 13 3 5 8 7 1 2 3 4	1 1 2 0 0 7 11 18 2 0 2 1 3 0 0 3 1 4 4 1 6 1 7 12 5 8 9 17 8 9 13 14 27 5 6 18 11 29 8 8 18 21 39 10 19 12 11 23 17 14 20 18 38 18 17 26 26 52 22 20 20 20 40 26 17 33 29 62 26 34 11 19 30 12 13 14 15 29 13 21 3 5 8 7 10 1 0	1 1 2 0 0 0 1 1 2 0 0 0 2 1 3 0 0 0 3 1 4 4 1 5 6 1 7 12 5 17 8 9 17 8 9 17 13 14 27 5 6 11 18 11 29 8 8 16 18 21 39 10 19 29 12 11 23 17 14 31 20 18 38 18 17 35 26 26 52 22 20 42 20 20 40 26 17 43 33 29 62 26 34 60 11 19 30 12 13 25 <	1 1 2 0 0 0 0 7 11 18 2 0 2 0 2 1 3 0 0 0 7 3 1 4 4 1 5 1 6 1 7 12 5 17 2 8 9 17 8 9 17 4 13 14 27 5 6 11 8 18 11 29 8 8 16 17 18 21 39 10 19 29 18 12 11 23 17 14 31 19 20 18 38 18 17 35 13 26 26 52 22 20 42 24 20 20 40 26 17 43 22 <	1 1 2 0 0 0 0 0 0 7 11 18 2 0 2 0 0 2 1 3 0 0 0 7 0 3 1 4 4 1 5 1 1 6 1 7 12 5 17 2 1 8 9 17 8 9 17 4 2 13 14 27 5 6 11 8 5 18 11 29 8 8 16 17 17 14 31 19 27 20 18 38 18 17 35 13 16 26 26 52 22 20 42 24 22 20 20 40 26 17 43 22 21 33 29 6

Covanta SEMASS - 141 Cranberry Highway, Braintree / Wareham, MA

Capacity =

1200 tons / day

	Thu	ursday 3/18	/21	Fr	iday 3/19/2	1
		, , , , , , , , , , , , , , , , , , , ,			., .,,,	
Time Period	Enter (SB)	Exit (NB)	TOTAL	Enter (SB)	Exit (NB)	TOTAL
12:00 AM	1	6	7	4	4	8
1:00 AM	8	7	15	7	12	19
2:00 AM	3	5	8	4	4	8
3:00 AM	12	3	15	7	1	8
4:00 AM	30	8	38	31	12	43
5:00 AM	139	42	181	149	26	175
6:00 AM	95	89	184	97	104	201
7:00 AM	52	41	93	40	37	77
8:00 AM	33	36	69	29	33	62
9:00 AM	57	43	100	60	50	110
10:00 AM	28	28	56	36	36	72
11:00 AM	37	41	78	38	48	86
12:00 PM	66	80	146	73	74	147
1:00 PM	49	43	92	39	35	74
2:00 PM	37	43	80	37	48	85
3:00 PM	49	60	109	40	55	95
4:00 PM	32	50	82	34	44	78
5:00 PM	85	82	167	103	84	187
6:00 PM	26	107	133	33	108	141
7:00 PM	0	12	12	5	36	41
8:00 PM	3	8	11	4	10	14
9:00 PM	13	10	23	17	15	32
10:00 PM	4	3	7	4	5	9
11:00 PM	2	5	7	2	2	4
TOTAL	861	852	1713	893	883	1776
TRUCK TRIPS	280	279	559	262	258	520
AM Peak Hour		4-				•
(7:30 - 8:30 AM)	23	19	42	8	13	21
PM Peak Hour		-	_		_	_
(4:45 - 5:45 PM)	2	2	4	4	5	9
Trip Rates per Tonnage Cap	acity					
Weekday Daily	0.718	0.71	1.428	0.744	0.736	1.48
Weekday AM Peak Hr	0.019	0.016	0.035	0.007	0.011	0.018
Weekday PM Peak Hr	0.002	0.002	0.004	0.003	0.004	0.007

Truck Trips per Tonnage Capacity 0.466 0.433	Truck Trips per Tonnage Capacity	0.466	0.433
--	----------------------------------	-------	-------

Daily Tonnage Received	797	1012
Percentage of Capacity	66%	84%

Trip Rates per Tonnage Received

Weekday Daily	1.08	1.069	2.14931	0.882	0.873	1.754941
Weekday AM Peak Hr	0.029	0.024	0.053	0.008	0.013	0.021
Weekday PM Peak Hr	0.003	0.003	0.006	0.004	0.005	0.009
Truck Trips per Tonnage Re	ceived		0.701			0.514

GEOTECHNICAL / SOIL BORINGS / ENVIRONMENTAL / SOILS / CONCRETE / MASONRY / STEEL / ROOFING / ASPHALT INSPECTION Mail all correspondence to: 100 SHEFFIELD ROAD · PO BOX 4776 · MANCHESTER, NH 03108-4776 · TELEPHONE (603)668-6016 · Fax (603)668-8641

May 21, 2021

Rebecca Brown, P.E. GPI 116 South River Road, Building B, Suite 1 Bedford, NH 03110

RE: Subsurface Exploration Program and Geotechnical Engineering Evaluation Proposed Pavement Improvements Carleton Drive Georgetown, MA

Project No. 21.067.NH

Dear Ms. Brown:

Miller Engineering & Testing, Inc. has recently completed a subsurface exploration program and subsequent geotechnical engineering evaluation of the existing asphalt roadway pavements for Carleton Drive located in Georgetown, Massachusetts. The exploration program and this engineering evaluation were performed in accordance with our proposal, Ref. File 162-21(R1), dated April 21, 2021.

This report summarizes the results of the recent subsurface investigation and includes a description of the subsurface exploration program and the conditions encountered, along with a geotechnical evaluation of the existing bituminous pavements. In addition, recommendations are provided to address roadway pavement improvements.

The geotechnical evaluation and recommendations presented herein are based, in part, on widely spaced test borings. The nature and extent of variations between exploration locations may not become evident until construction. Should significant variations become evident during construction, it may be necessary to re-evaluate the conclusions and recommendations contained herein. The contents of this letter report are subject to the limitations in Appendix A.

SITE AND PROJECT DESCRIPTION

The proposed roadway improvements will occur over the entire, approximately 1600-foot, length of Carleton Drive, located in Georgetown, Massachusetts. The existing cul-de-sac roadway provides access from Massachusetts Route 133 (East main Street) to several small commercial and industrial buildings.

Resent traffic data has indicated that the current traffic volume on the existing roadway consist of primarily light passenger vehicle traffic (+/-500 vpd) and limited medium to heavy vehicle traffic (+/-50 vpd).

Carleton Roadway is bordered by low, rolling, pine woodlands along the southwest perimeter. Several vernal pools were noted near the edges of the roadway, in this area, indicating a potential seasonal ground water issue in proximity to the roadway surface. These woodlands transition to low lying wetlands along the southeastern half of the Drive. In this area, the roadway was only slightly elevated above the wetland indicating a potential water table in close proximity to the pavement subgrade. Relatively flat, slightly elevated, woodlands exist along the northern perimeter of the Drive in and around two large multi-purpose commercial and industrial buildings with surrounding asphalt paved parking and roadways. Topography along Carleton Drive is relatively flat and slopes down gently from the west to the east. Inspection of the down-sloping roadway shoulders indicate that the original roadway was constructed on an elevated berm through the existing topography.

A visual inspection of the existing roadway indicated signs of moderate to severe pavement distress along the entire length of the roadway. Moderate to severe rutting was observed in both traffic lanes throughout the roadway length. Several edge cracking and secondary cracking was noted along the southern edge of roadway pavements within the western half of the drive. Potholes were observed to be scattered, irregularly, throughout the western half of the roadway. A few larger patch repairs indicate the need for significant, past, roadway base and pavement repairs.

It appears that the existing roadway pavements were resurfaced, with a 1- to 1.5-inch-thick asphalt wearing course overlay, at sometime within the previous 10 to 12-years; however, the current condition of the wearing course is considered to be in poor condition. Severe raveling of the pavement surface was noted along the length of the roadway as well as severe longitudinal joint cracking at the roadway centerline. At numerous locations, the existing wearing course had been mechanically stripped, by plows, to expose the underlying pavement surface. Inspection of this strata showed no indicating of the underlying surface being properly milled or tack coated, prior to the installation of the pavement surface overlay.

SUBSURFACE EXPLORATION PROGRAM

A subsurface exploration program was completed at the project site on April 29, 2021. The exploration program was performed by a drill crew from Miller Engineering & Testing, Inc. The exploration program consisted of the advancement of eleven (11) test borings, B-1 through B-11, which were advance along the length of the roadway, at approximate 150-foot spacings, and alternating drive lanes. Test borings were advanced from the existing roadway surface to depths ranging from 2.5 to 8-feet. The approximate locations of the test borings are shown on the attached Subsurface Exploration Location Plan, Figure 1.

The purpose of the subsurface exploration program was to:

- Assess the nature, consistency and relative density of the soils encountered at the site, provide soil samples for visual classification, and perform standard penetration testing.
- Assess the thickness and conditions of the existing pavement structure and subgrade soils encountered at the test boring locations.
- Assess the thickness and condition of the existing asphalt pavements.
- Asses the depth to groundwater, if encountered.

The test borings at the site were advanced using a truck mounted CME-45 drill rig, turning hollowstem augers. Subgrade soil samples were typically collected immediately below the bituminous pavements and then continuously to the termination depths of the test borings. Sampling was performed using a 1-3/8 inch, inside diameter, split barrel spoon sampler. Standard Penetration Tests (SPT's), which were used to assess the soils relative density, were performed at sampling depths by driving the split spoon sampler 18-24 inches with a 140-pound hammer falling 30 inches. Standard penetration testing was performed in general accordance with ASTM Method D-1586. The standard penetration resistance, or N-Value, is defined as the number of hammer blows required to drive the sampler between the 6 and 18-inch increments.

Details of the specific conditions observed at the test boring locations are provided on the Test Boring Logs in Appendix B.

SUBSURFACE CONDITIONS ENCOUNTERED

The results of the test borings indicate that subsurface conditions at the test boring locations generally consist of bituminous asphalt pavements overlaying thin gravel fill, over silty sand fill, in-turn overlaying the naturally-occurring organic silt and/or the silty, granular subgrade. Groundwater was observed in several of the test borings at depths of approximately five (5) to six (6) feet below the existing roadway surface.

The subsurface conditions observed at the test boring locations are summarized below:

BITUMINOUS ASPHALT PAVEMENTS

Bituminous asphalt pavements were encountered at each of the test boring locations, immediately at the ground surface. The asphalt pavements were observed to range in thickness from two-and-one-half (2.5) inches to four-and-one-half (4.5) inches, but typically averaged approximately three (3) inches in thickness.

The following table summarizes the results of the pavement thicknesses at the test boring locations:

_	Table Asphalt Cor		
Boring Location	Approx. Pavement Thickness (in)	Boring Location	Approx. Pavement Thickness (in)
B-1	3	B-7	2.5
B-2	3.5	B-8	2.5
B-3	4	B-9	4.5
B-4	3	B-10	4
B-5	2.5	B-11	3
B-6	4		

BASE COURSE FILL MATERIAL

Medium dense to dense, granular, crushed gravel fill materials were encountered immediately underlying the asphalt pavements at the test boring locations. This material generally consisted of brown to dark-brown, fine to coarse sand with little to some gravel and little to trace amounts of silt. The crushed gravel fill materials were observed to range in thickness from approximately four (4) to ten (10) inches, but was generally estimated to be approximately six (6) inches in average thickness along the length of the roadway.

GRANULAR FILL MATERIAL

Granular fill materials were encountered immediately underlying the crushed gravel fills at most of the test boring locations. The granular fill materials generally consisted of medium-dense to dense, brown, fine to medium sand, with little to some coarse sand, little to some gravel and little to some silt.

The granular fills encountered at the test boring locations appear to have been installed to elevate the roadway to the design grades were observed to extend to depths ranging from one (1) to greater than six (6) feet below the existing roadway surface, but typically extended to four (4) feet below the pavement surface. The granular fills typically extended to the underlying naturally occurring subgrade, with the exception of Test Borings B-1 and B-2, where the granular fill materials extended beyond the termination depths of the test borings.

NATURALLY OCCURRING ORGANIC SILT DEPOSITS

Naturally occurring organic silt deposits were observed immediately underlying the granular fill deposits at test borings B-3, B-5, B-6 and B-8. At these locations, the subgrade below the fills consisted of loose, dark-brown to brown, organic silts with little to trace amounts of fine sand and trace amounts of root matter. This material was observed to range in thickness from twelve (12) to twenty-four (24) inches.

The organic silt deposits observed in the test borings appear to be consistent with the relatively incompressible basal soils typically located below organic peat deposits. Based on the lack of fibrous peat, it is likely that the naturally occurring organic, fibrous peats were removed during

the original roadway construction, leaving the underlying, relatively uncompressible, organic silts to remain below the roadway fills.

NATURALLY OCCURRING GRANULAR DEPOSITS

Naturally occurring granular deposits were encountered immediately underlying the granular fill and organic silt deposits at each of the test boring locations, with the exceptions of test borings B-1, B-2, B-4 and B-8, and extended to the termination depths of the test borings.

The naturally occurring granular deposits were noted to vary between loose, brown to orange, fine sand and silt with trace amounts of gravel to medium-dense, brown, fine to medium sand and gravel with little to some silt.

AUGER PENETRATION REFUSAL

Auger penetration refusal was encountered at test boring B-4 at a depth of 2.5 feet below the ground surface.

Test boring B-4 was advanced in the vicinity of an existing roadway surface repair and patch. Approximately twelve (12) to fourteen (14) inches of crushed stone was encountered immediately underlying the asphalt patch, and extended to the termination depth of the test boring. The presence of the surface pavement patch and the crushed stone fill indicated a previous roadway and/or utility repair. In order to prevent damage to what may be an underlying utility, auger penetration was terminated upon encountering significant grinding of the drilling equipment. Based on surrounding test borings within a 150-foot radius, it is unlikely that the penetration refusal is due to the presence of bedrock or very large boulders.

Groundwater Observations

Groundwater observations were made at each of the test boring locations, upon their completion, and after a brief stabilization period. Also, the moisture content of retrieved soil samples was assessed to aid in the determination of the groundwater level.

The following table summarizes the results of the groundwater measurements:

	Groundwater Mea	surement Results	
Boring Location	Approx. Groundwater Depth (ft)	Boring Location	Approx. Groundwater Depth (ft)
B-1	Not Encountered	B-7	Not Encountered
B-2	Not Encountered	B-8	Not Encountered
B-3	6	B-9	6
B-4	Not Encountered	B-10	5
B-5	6	B-11	5
B-6	6		

Table #2

It should be noted that groundwater fluctuates from time to time as a result of season, temperature, precipitation, adjacent structures and other environmental conditions. Groundwater conditions at other times, therefore, may be different from those observed and recorded herein.

The results of the groundwater observations at the test boring locations are indicated on the Test Boring Logs in Appendix B.

LABORATORY TESTING

A total of ten (10) samples, identified as MET Laboratory Numbers L21096-A through J, were collected from the split-spoon samples during the test boring program. The samples were submitted to the laboratory for grain size analysis testing, to aid in the evaluation of the engineering characteristics of the fill material located immediately below the asphalt pavements at the site to assess their suitability for re-use and to adequately support the pavement structure. The results of the laboratory testing are provided in the Grain Size Distribution Reports in Appendix C.

EXISTING AND PROPOSED TRAFFIC LOADS AND INTENSITIES

Existing and proposed traffic loads and volumes were developed by representatives of GPI for use in the proposed pavement design evaluation. Current composite traffic data was classified into three vehicle loading scenarios and then adjusted for seasonal volume to model the current traffic loads and intensities. Subsequently, the predicted volume and traffic intensities were determined and added to the existing traffic determinations to prepare an estimate of anticipated daily traffic volumes after the construction of a proposed Transfer Station. A summary of the traffic calculations used to develop the proposed design pavement section are provided below:

		Weekday	Daily Traffic	Volumes	
Vehicle Type	Raw Data (March 2021)	Seasonally Adjusted	Existing Volumes (COVID Adjusted)	Site- Generated Trips	Build Trips
Group 1 (Passenger Cars, Panel Trucks, Pick-Ups)	346	383	493	610	1103
Group 2 (Single-Unit Trucks, Small Contractor, Landscape)	24	27	35	100	135
Group 3 (Multi-Unit Trucks, Packers, Roll-Offs, Transfer Trailers)	10	11	14	180	194
TOTAL =	380	421	542	890	1432

 Table #3

 Traffic Load and Intensity Results

Based on the data provided herein, and assuming a 20-year design period for the roadway, it was determined that the roadway would be subjected to traffic loading of 3.3×10^6 ESAL's (Equivalent 18-kip Single Axel Load Applications) over its design life.

ENGINEERING EVALUATION

Based on the result of a combination of visual inspections and test borings performed at the site, the existing asphalt pavements within Carleton Drive are exhibiting symptoms of moderate to severe distress as a result of a combination of thermal and age-related shrinkage and subgrade fatigue. It is recommended that the existing bituminous pavements at the site be rehabilitated to provide improved safety and serviceability to adequately support the anticipated traffic loads and intensities.

The existing roadway pavement section was observed to consist of approximately three (3) inches of bituminous asphalt pavement overlying approximately six (6) inches of medium-dense crushed gravel, overlying thirty (30) inches of medium-dense, silty, gravely sands, in turn overlying the naturally occurring silty subgrade.

A structural analysis of the existing pavement section was performed to assess the suitability of the existing pavement structure to support the design traffic loadings. The result of the analysis indicating that the existing pavement section is inadequate to support the design traffic over a 20-year design period.

An alternatively pavement section, consisting of a 2-inch asphalt overlay of the existing pavements (5-inches of pavement total) was evaluated. The results of the evaluation also indicated that the proposed section would be inadequate to support design traffic intensities.

A third pavement section was considered, in which the existing asphalt pavements would be reclaimed into the underlying base course gravels, to produced a reclaimed stabilized base which would support a new 4-inch asphalt pavement section. Analysis of the capacity of a reclaimed pavement section also failed to provide adequate support of the design traffic loading.

The results of the pavement section analyses indicate that the existing base course and subbase course soils below the roadway are currently unsuitable to support the design traffic loads and intensities. Furthermore, it does not appear likely that the existing base course gravels can be adequately improved, in-place via reclamation processes, to support the design traffic. As a result, it will b necessary to over-excavate and replace the existing base course gravels and a portion of the subbase course soils to facilitate the installation of a new, more substantial, crushed gravel base course and heavier asphalt pavement section to support design traffic loading.

PAVEMENT DESIGN AND CONSTRUCTION RECOMMENDATIONS

Bituminous asphalt pavements for the proposed project were analyzed and designed in accordance with procedures developed in the "1993 AASHTO Guide for the Design of Pavement Structures". This analysis method was used in combination with the results of the test borings to determine the recommended pavement section thicknesses, which will adequately support the anticipated low traffic loading intensity. In addition to traffic loading and intensities, the AASHTO analysis method also considers subgrade strength, environmental effects and serviceability requirements.

The results of the analysis indicate that the existing base course soils below paved roadway areas of the site are unsuitable for support of the proposed roadway should be removed and replaced to support the design traffic loading and intensities. The existing asphalt pavements, the underlying

crushed gravel base course and portions of the underlying subbase course fills should be overexcavated and replaced with compacted Dense Graded Crushed Gravel. Upon completion of the over-excavation and replacement of the base and subbase soils, new asphalt pavements should then be installed to a minimum thickness of five (5) inches.

The full depth pavement reconstruction should be performed as follows:

1. The first item of earthwork should consist of mechanically excavating and removing the existing asphalt pavements, crushed gravel base course soils and portions of the underlying subbase course silty, gravely fills, to a minimum depth of seventeen (17) inches below the proposed finished asphalt roadway grades.

The excavated asphalt, base and subbase soils are considered unsuitable for reuse below the proposed roadway section and should be removed from the site.

If the existing asphalt pavements were pulverized and blended with the underlying base course crushed gravels, prior to excavation, the resulting material may meet the minimum requirements for Reclaimed Stabilized Base and could be used in raise in-grade areas of the site below the proposed Dense Graded Crushed Gravel fills. This material may also be suitable for reuse below proposed asphalt paved parking or low-volume roadway area of the proposed transfer station and could be stockpiled for future use.

2. Following the over-excavation and removal process of the existing pavements, and gravels, the exposed subgrade should be graded and compacted to allow for the installation of a new Base Course gravel fills.

The exposed subgrade soils are anticipated to consist of the existing brown, medium-dense, silty, gravely, fine to medium sands with trace amounts of coarse sand. Prior to subsequent backfilling, this material should be compacted to a minimum of 95% of the material's maximum dry density, as determined by ASTM Method D1557.

Subgrade areas where distress in the existing pavements has occurred, as a result of settlement (e.g., manholes, catch basins, etc..), should be over-excavated and replaced with compacted engineered backfill materials prior to installation of the new Base Course gravel fills. At these areas, the top 24-inches of existing backfill material, installed around the buried structures, should be over-excavated and replaced with Dense Graded Crushed Stone, Item M2.01.7 meeting the minimum requirements of the current Massachusetts Highway Department Standard Specifications for Highways and Bridges (MHDSSHB). This material should be installed in 12-inch maximum loose lifts and be compacted to a minimum of 95% of the material's maximum dry density, as determined by ASTM Method D1557.

The over-excavation and replacement zone around the structures should be extended a minimum of five (5) feet laterally beyond the structures.

In the event localized wet areas are encountered in the subgrade, which may create unstable conditions, the unstable areas should be over-excavated by a minimum of 12-inches and be

replaced with ³/₄-inch crushed stone, completely wrapped in filter fabric (Mirafi 140N, or equal). The crushed stone and fabric should be keyed into the subgrade using the effort of four (4) passes of a 700-pound vibratory plate compactor.

- 3. Upon completion of the subgrade preparation and compaction, Base Course gravel fills, consisting of a minimum of 12-inches of Dense Graded Crushed Stone, should be installed to the bottom of the proposed asphalt pavement elevations. The Dense Graded Crushed Stone materials should meet the minimum requirements of Item M2.01.7, of the current Massachusetts Highway Department Standard Specifications for Highways and Bridges (MHDSSHB). This material should be installed in 12-inch maximum loose lifts and be compacted to a minimum of 95% of the material's maximum dry density, as determined by ASTM Method D1557.
- 4. All existing covers, boxes and structures located within the reconstructed pavement sections shall be raised or lowered, as necessary, to construct rim elevations level and flush with the finished asphalt surface.
- 5. Upon completion of the subgrade and base course preparation procedures, asphalt pavements should be installed in the minimum thickness provided in the table below:

		Thickness
Material	Spec	(Inches)
Asphalt Wearing Course	12.5mm Superpave Surface Course MHD Mix SSC - 12.5	2.0
Asphalt Binder Course	19.0mm Superpave Intermediate Course MHD Mix SIC - 190	3.0
Base Course	Dense Graded Crushed Gravel MHD Item M1.03.1	12.0
Subbase Course	Existing Silty Gravel Subgrade or Reclaimed Pavement Borrow (M1.09.0)	20.0

 Table #4

 Proposed Roadway Pavement Section

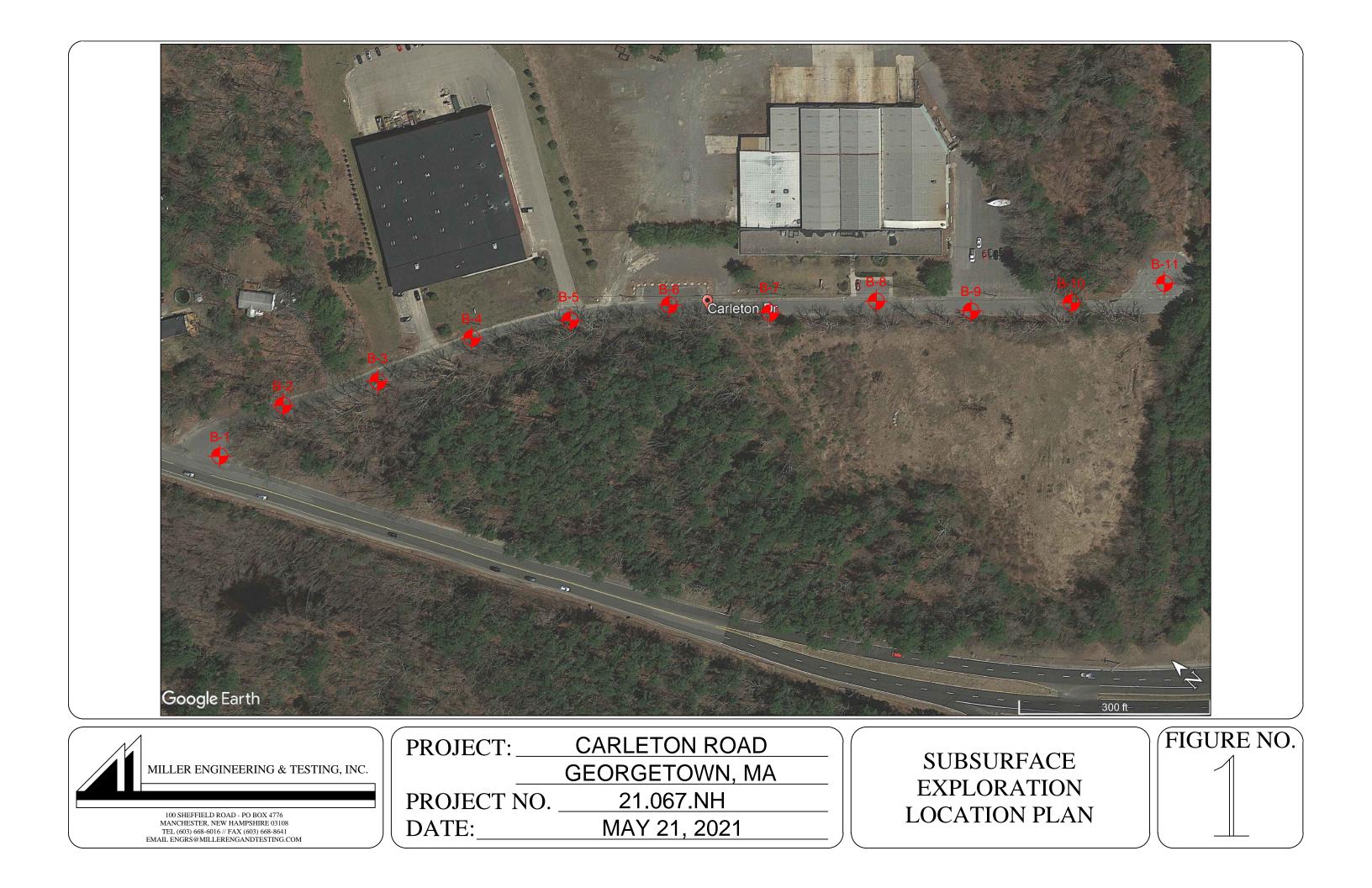
6. The bituminous pavements placed in full depth pavement reconstruction areas should be designed and installed in accordance with Section 460, of the current Massachusetts Highway Department Standard Specifications for Highways and Bridges, except where noted herein, or as directed and approved by the Engineer. The Hot Mix Asphalt courses shall meet the minimum material mix specifications for 12.5mm and 19.0mm dense graded SUPERPAVE mix, with a PG 64-22 Binder.

The Surface Course and Binder Course pavements should be installed and compacted to between 92 and 97 percent of the materials Theoretical Maximum Density as determined by AASHTO Method T 209.

FINAL DESIGN AND CONSTRUCTION MONITORING

It is recommended that a qualified geotechnical engineer or his representative be retained to provide engineering services during the site preparation pavement construction phases of the project. This will become particularly important relative to the excavation of unsuitable materials and placement and compaction of engineered fill at the project site. This allows for design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction. The adequacy of fill compaction should be determined by field density testing as fill is placed and compacted.

Representative samples of all backfill soil materials and asphalt materials should be submitted to Miller Engineering & Testing, Inc. for testing to establish their optimum water/asphalt contents and maximum dry densities, and to compare their gradation characteristics with the requirements of the current Massachusetts State Department of Transportation Standard Specifications. In this manner, compaction criteria can be developed which will provide the materials with adequate strength and minimal distortion.


Lastly, it is recommended that this firm be retained to prepare final design plans and to prepare earthwork and bituminous concrete related project specifications. In the event that any changes in the nature and/or scope of the proposed pavement improvements are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and the conclusions of this report modified or verified in writing by Miller Engineering & Testing, Inc.

We trust the report meets with your current needs. Should you have any questions, please do not hesitate to contact us.

Respectfully,

MILLER ENGINEERING & TESTING, INC.

Gerald N. Gendron Senior Staff Engineer Figures

Appendix A

LIMITATIONS

Explorations

- 1. The analyses, recommendations and designs submitted in this report are based in part upon the data obtained from subsurface explorations. The nature and extent of variations between these explorations may not become evident until construction. If variations then appear evident, it will be necessary to re-evaluate the recommendations of this report.
- 2. The generalized soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and have been developed by interpretation of widely spaced explorations and samples; actual soil transitions are probably more gradual. For specific information, refer to the boring logs.
- 3. Water level readings have been made in the drill holes at times and under conditions stated on the boring logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, temperature, and other factors differing from the time measurements were made.

Review

4. It is recommended that this firm be retained to review final design plans and specifications. In the event that any changes in the nature, design, or location of the structures are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of the report modified or verified in writing by Miller Engineering & Testing, Inc.

Construction

5. It is recommended that this firm be retained to provide soils engineering services during the excavations and foundation construction phases of the work. This is to observe compliance with the design concepts, specifications, or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction.

Use of Report

- 6. This report has been prepared for the exclusive use of **GPI** for the **Proposed Pavement Improvements to Carleton Drive** located in **Georgetown**, **Massachusetts** in accordance with generally accepted soil and foundation engineering practices. No other warranty, expressed or implied, is made.
- 7. This soil and pavement engineering report has been prepared for this project by Miller Engineering & Testing, Inc. This report was completed for design purposes and may be limited in its scope to prepare an accurate bid. Contractors wishing a copy of the report may secure it with the understanding that its scope is limited to design considerations only.

Appendix B

												DOM	IG LUG
\mathcal{N}						Pı	roject:			Carleton Dri		Sheet	of
	MILLER	ENGINEERIN	NG & TE	ESTING	, INC.				G	eorgetown, 1	MA	Boring No:	B-1
						Proje	ct No:			21.067.NH	[Location:	See Plan
		eld Road - Ma		-		Date	Start:			04-29-21			
	Ph. (603) 6	68-6016 - Fax	k: (603)	668-864	41	Date	e End:			04-29-21		Approx. Sur	face Elev:
										GROUND	WATER OBSI	ERVATIONS	
	С	ASING		SA	MPLER	2		Date		Depth	Casing At	Stabi	lization Period
уре		HSA			SS		0	4-29-21		None	6'	Upo	n Completion
ze	2.	-1/4" ID		1-	3/8" ID								
ammer				1	40 lbs.								
all					30"								
		SAMPL	E			BLC	ows		G4		1	I	
Depth/ Ca Elev. bl/	ft Sample	Depth	Pen.	Rec.	0-6''	6-12"	12-18''	18-24''	Strata Change		Sample	Description	
1	No.	Range 0.0-0.3	3					10 -1		-: 3" Aspha	.]+		
-	S-1	0.5-2.0	18	9		30	27	20			n, fine to coarse :	sand, some grav	rel, little silt
	S-2	2.0-4.0	7	17	15	10	8		S-2: Brown (cemented	n, fine to coarse s oiled soil in sam	sand, some silt, aple) (FILL)	little gravel	
-	S-3	4.0-6.0	8	17	41	47		S-3: Brown (FILL)	a, fine to coarse :	sand, some silt a	and gravel		
-										BORING TER	MINATED AT	6 ft	
-													
Driller: Helper: Inspector:	R. Marcoux J. Donahue T. Young		0-2 2-4 4-8	HESIVE CO	T	CY (Blows	/Foot)			0-4 VERY L 4-10 LOOSE 10-30 MEDI	UM DENSE		PROPORTIONS TRACE: 0-10% LITTLE: 10-20% SOME: 20-35% AND: 35-50%
NOTES:			15-	5 STIFF 30 HARD						30-50 DENS 50+ VERY I	ENSE		

												1	
\mathcal{M}						Pı	roject:			Carleton Drive		Sheet	of
	MILLER	ENGINEERII	NG & TE	ESTING	, INC.				G	eorgetown, MA		Boring No:	B-2
						Proje	ct No:			21.067.NH		Location:	See Plan
	100 Sheffie	eld Road - M	anchest	er, NH (03103	Date	Start:			04-29-21			
F	Ph. (603) 60	68-6016 - Fa	x:(603)	668-864	41	Dat	e End:			04-29-21		Approx. Sur	face Elev:
										GROUNDWA	ATER OBSE	RVATIONS	
	С	ASING		SA	MPLER	1		Date		Depth	Casing At	Stabi	lization Period
уре		HSA			SS		0	4-29-21		None	6'	Upo	n Completion
ze	2-	-1/4" ID		1-	3/8" ID								
ammer				1	40 lbs.								
11					30"								
epth/ Ca		SAMPI	Æ			BLC	ows		Strata	·		•	
Elev. bl/i		Depth Range	Pen.	Rec.	0-6''	6-12"	12-18''	18-24''	Change		Sample	Description	
	-	0.0-0.3	3.5							-: 3.5" Asphalt	:		
	S-1	0.5-2.0	18	6		25	35	39		S-1: Brown, fit (FILL)		and, some grav	el, little silt
	8-2	2.0-4.0	12	19	17	20	20	20		S-2: Brown, fri (cemented oile	ne to coarse s d soil in sam	and, some grav ple) (FILL)	el and silt
	S-3	11	29	25	10		S-3: Brown, fr (FILL)	ne to coarse s	and, some grav	el and silt			
										B	ORING TER	MINATED AT	' 6 ft
Driller: Helper: Inspector:	R. Marcoux J. Donahue T. Young		0-2 2-4 4-8 8-1	ESIVE CO VERY SOI SOFT MEDIUM SOFT 30 HARD	FT	CY (Blows	/Foot)			COHESIONLESS 0-4 VERY LOOS 4-10 LOOSE 10-30 MEDIUM 1 30-50 DENSE 50+ VERY DENS	E		PROPORTIONS TRACE: 0-10% LITTLE: 10-20% SOME: 20-35% AND: 35-50%

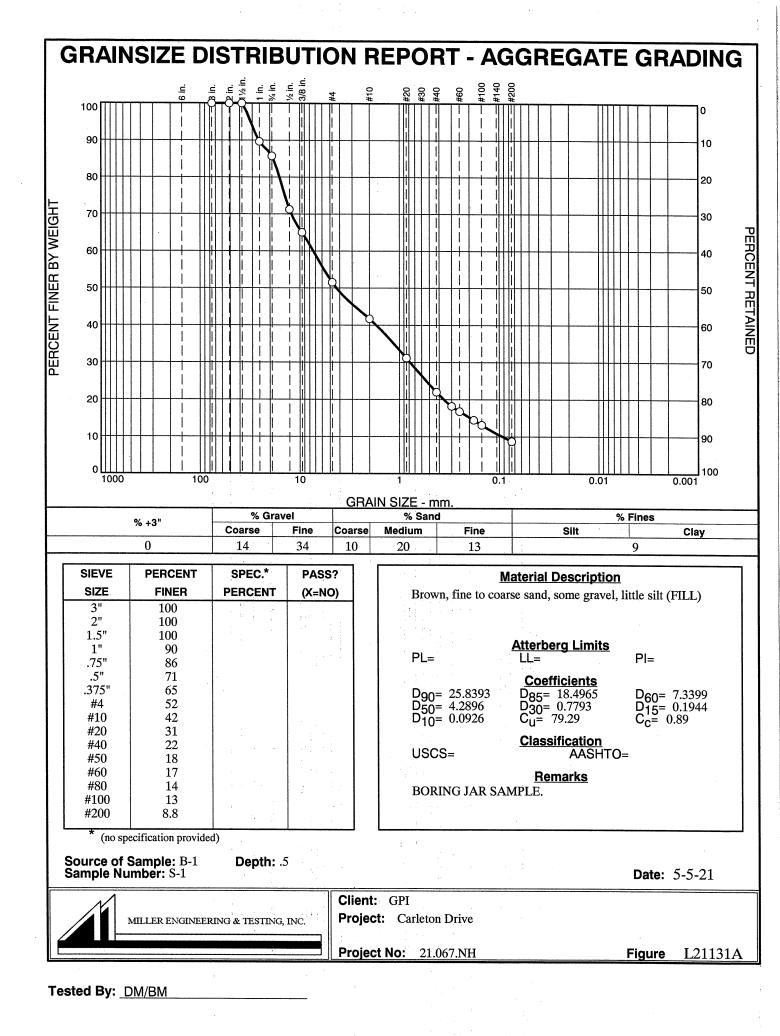
	1						Pı	oject:			Carleton Dri eorgetown, 1		Sheet <u>1</u> of Boring No: B-3	_1	
		MILLEF	ENGINEERIN	<u>G & TE</u>	STING	, INC.	Derete	-4 NI		0	21.067.NH				
	1	00 Sheff	ield Road - Mar	hchest	or NH (3103		ct No: Start:			04-29-21	<u> </u>	Location: See Pla	an	
			568-6016 - Fax:		-			e End:			04-29-21		Approx. Surface Elev:		
							Date				GROUND	WATER OBSE			
			CASING		SA	MPLER			Date		Depth	Casing At	Stabilization Perio	d	
Туре			HSA		~	SS			04-29-21		6'	8'	Upon Completion		
Size	-		2-1/4" ID		1-	3/8" ID									
Hammer						40 lbs.									
Fall						30"									
Depth/	Cas		SAMPLE		1		BLC	ows		Strata		1		s	
Elev.	bl/f		Depth Range	Pen.	Rec.	0-6''	6-12"	12-18'	' 18-24''	Change		Sample	Description	Notes	
0		-	0.0-0.3	4							-: 4" Aspha	ılt		(1)	
-		S-1	0.5-2.0	18	6		15	38	42		S-1: Dark t	prown, crushed gi	ravel (FILL)	(2)	
2-		S-2	2.0-3.5	18	8	16	25	15			S-2: Brown (FILL)	n, fine to coarse s	and, some gravel, little silt		
		S-2A	3.5-4.0	6	5				9				to medium sand, some silt, trace		
4		S-3	4.0-6.0	24	14	3	2	4	2		gravel (FIL		ganic silt, trace fine sand (pea	t)	
- - - - - - - - -		S-4	6.0-8.0	24	18	3	2	3	6		and, wet	(3)			
-8												BORING TERM	MINATED AT 8 ft		
10 — - - 12 —															
	: or:	R. Marcou J. Donahu T. Young	e	0-2 2-4 4-8	IESIVE CO VERY SOF SOFT MEDIUM 35 STIFF 30 HARD	FT	CY (Blows	/Foot)			COHESIONL 0-4 VERY L 4-10 LOOSE 10-30 MEDI 30-50 DENS 50+ VERY D	UM DENSE	PROPORTION TRACE: 0-10 LITTLE: 10-2 SOME: 20-35 AND: 35-50%	% 0% %	
NOTES REMA								ARY BE	TWEEN SO	IL TYPES.	TRANSITION	MAY BE GRADUAL.	005		
		FLUCTUA	TIONS IN THE LEVEL	OF THE C	ROUNDW	ATER MA	Y OCCUR	DUE TO	OTHER FA	CTORS TH	HAN THOSE PR	ESENT AT THE TIM	IE MEASUREMENTS WERE MADE		

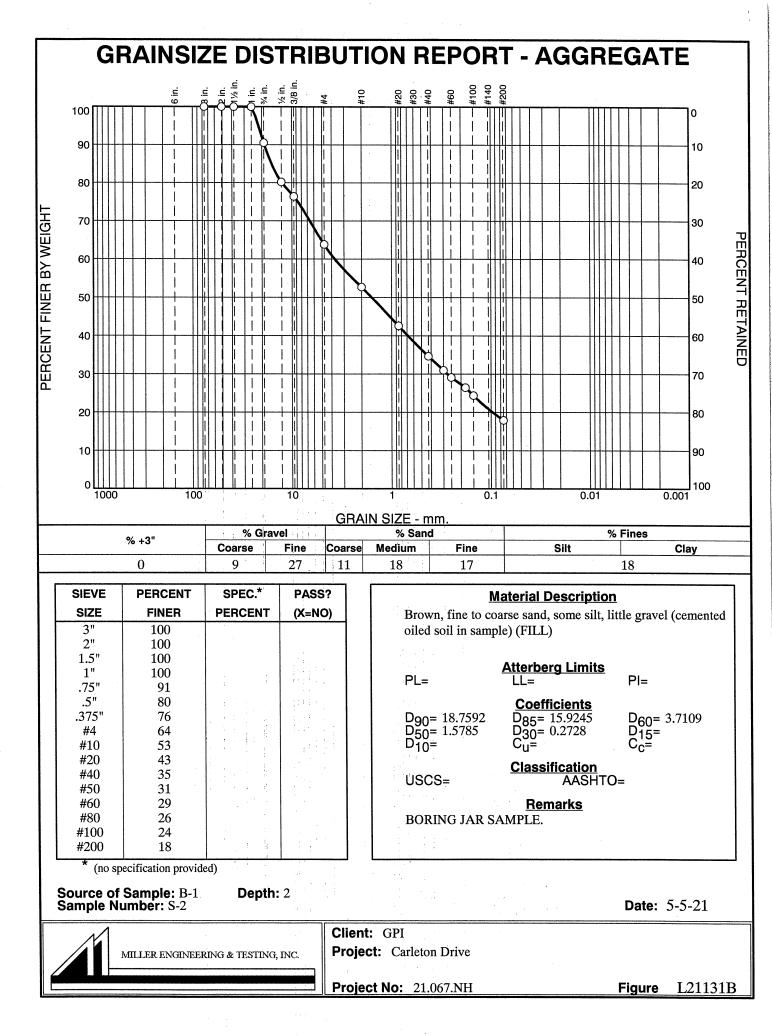
Λ	1						Pı	oject:			Carleton Dri			0f
		MILLEF	RENGINEERIN	IG & TE	STING	, INC.				Ge	eorgetown, l		Boring No: <u>B-4</u>	
							Proje	ct No:			21.067.NH		Location:	See Plan
			ield Road - Ma		-		Date	Start:			04-29-21			
	P	h. (603) 6	568-6016 - Fax	:(603)6	568-864	41	Date	e End:			04-29-21		Approx. Surface E	lev:
											GROUND	WATER OBSE	RVATIONS	
			CASING		SA	MPLER	1		Date		Depth	Casing At	Stabilization	n Period
Туре			HSA			SS		(04-29-21		None	2.5'	Upon Com	pletion
Size			2-1/4" ID		1-	-3/8" ID								
Hammer					1	40 lbs.								
Fall						30"								
Depth/	Cas		SAMPLI	E			BLC	ows		Strata		<i>a</i>		s
Elev.	bl/f		Depth Range	Pen.	Rec.	0-6''	6-12"	12-18'	' 18-24''	Change		Sample	Description	Notes
0		-	0.0-0.3	3							-: 3" Aspha	lt		
-		S-1	0.5-1.2	8	4		17	65/2:	35/0"		S-1: Dark t little silt (F		rse sand, some crush	ed gravel,
2-											Auger Re	fusal at 2.5'		
												BORING TERM	IINATED AT 2.5 ft	
10		R. Marcou	x	СОН	ESIVE CO	INSISTEN	CY (Blows	/Foot)			COHESIONL	ESS (Blows/Foot)	PROP	ORTIONS USED
Helper	: or:	J. Donahua T. Young		0-2 2-4 4-8 8-1	VERY SOI SOFT MEDIUM 5 STIFF 30 HARD	FT	(220113				0-4 VERY L0 4-10 LOOSE 10-30 MEDI 30-50 DENSI 50+ VERY D	DOSE JM DENSE	TRA LITT SOM	CE: 0-10% TLE: 10-20% IE: 20-35% D: 35-50%
REMA	RKS:	THE STRA' WATER LE FLUCTUAT	TIFICATION LINES R EVEL READINGS HAY TIONS IN THE LEVEL	EPRESENT VE BEEN M 2 OF THE G	T THE APP IADE IN T ROUNDW	ROXIMAT HE DRILL ATER MA	E BOUND HOLES A' Y OCCUR	ARY BET I TIMES DUE TO	TWEEN SO AND UNDI OTHER FA	IL TYPES. ER CONDIT CTORS TH	TRANSITION I TIONS STATEI IAN THOSE PR	MAY BE GRADUAL.) ON THE BORING L ESENT AT THE TIM	OGS. E MEASUREMENTS WER	E MADE.

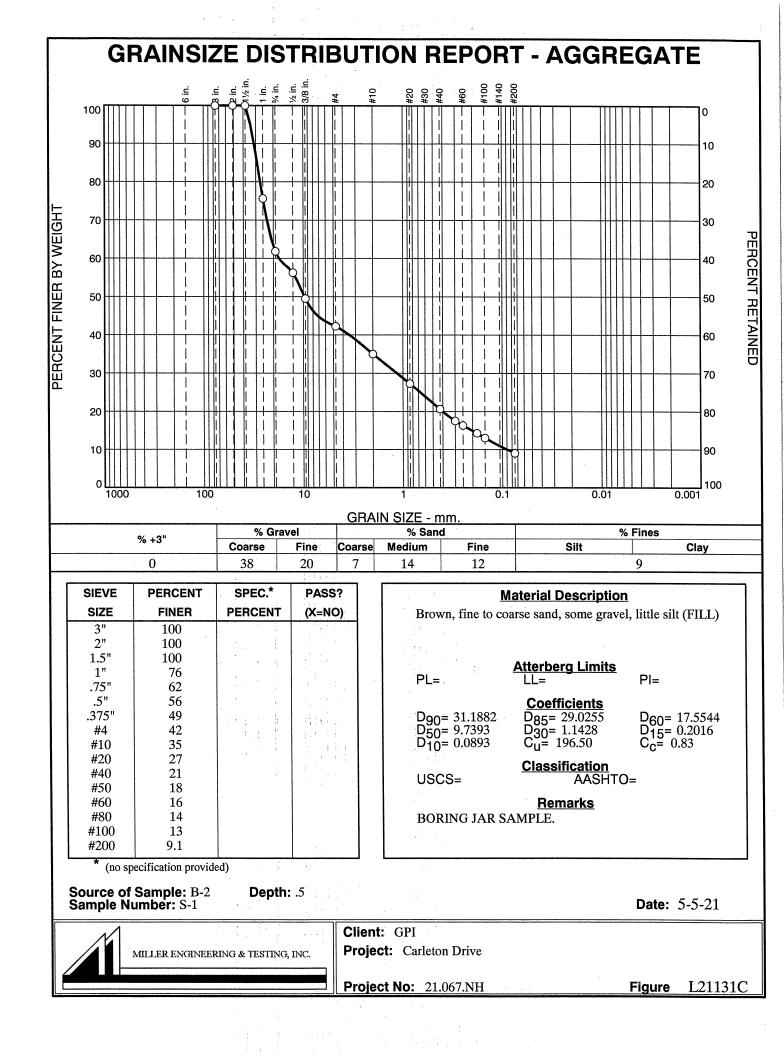
100 Ph.	0 Sheffiel . (603) 66 . CA	NGINEERING d Road - Man 8-6016 - Fax: ASING HSA	cheste	er, NH (03103		ct No: Start:			eorgetown, N 21.067.NH 04-29-21		Boring No:	See Plan
Ph. vpe ze ammer ul Depth/ Cas	. (603) 66 CA	8-6016 - Fax:										Location:	See Plan
Ph. vpe ze ammer ul Depth/ Cas	. (603) 66 CA	8-6016 - Fax:				Date	Start:						
/pe ze ammer ull Depth/ Cas	CA	ASING			•• •								
zeammerall	I					Dat	e End:				WATER OBSE	Approx. Sur	lace Elev:
zeammerall	I			CA.	MPLER			Date					lization Period
zeammerall		пол		5A	SS	<u> </u>		04-29-21		Depth 6'	Casing At 8'		n Completion
ammer 111 Depth/ Cas	2-1	/4" ID		1	3/8" ID			04-29-21		0	0		
ll Depth/ Cas		1/4 ID			40 lbs.								
Depth/ Cas				1	30"								
Depth/ Cas Elev. bl/ft		SAMPLE			50	BLO	ows						
	Sample	Depth	Don	Dee	0-6''			' 18-24''	Strata Change		Sample	Description	
	No.	Range	Pen.	Rec.	0-0	0-12	12-10	10-24	Change		1.		
	-	0.0-0.2	<u>2.5</u> 19	7	4/1 !!	20	25	21		-: 2.5" Aspł		C	
	S-1	0.4-2.0	7	4/1"	28	25	21			rown to brown, vel, little silt (FI		and, some	
	S-2	2.0-3.2	9	20	37	50/2"			S-2: Brown (FILL)	, fine to coarse s	and, some grav	el and silt	
	S-3 4.0-6.0 24 9						1	1		S-3: Dark b organic roo	rown, organic si ts (peat)	lt, trace fine sar	nd, trace fine
	S-4	6.0-7.5	18	14	2	3	8			S-4: Brown	, fine sand, some	e silt, trace fine	roots, wet
	S-4A	7.5-8.0	6	6				14		S-4A: Brow	vn, fine sand, tra	ce silt, wet	
											BORING TER	MINATED AT	8 ft
Helper: J. 1	Marcoux Donahue Young		0-2 2-4 4-8 8-1	ESIVE CO VERY SOF SOFT MEDIUM : 5 STIFF 30 HARD	FT	CY (Blows	/Foot)			COHESIONLE 0-4 VERY LC 4-10 LOOSE 10-30 MEDIU 30-50 DENSE 50+ VERY DI	IM DENSE		PROPORTIONS U TRACE: 0-10% LITTLE: 10-20% SOME: 20-35% AND: 35-50%

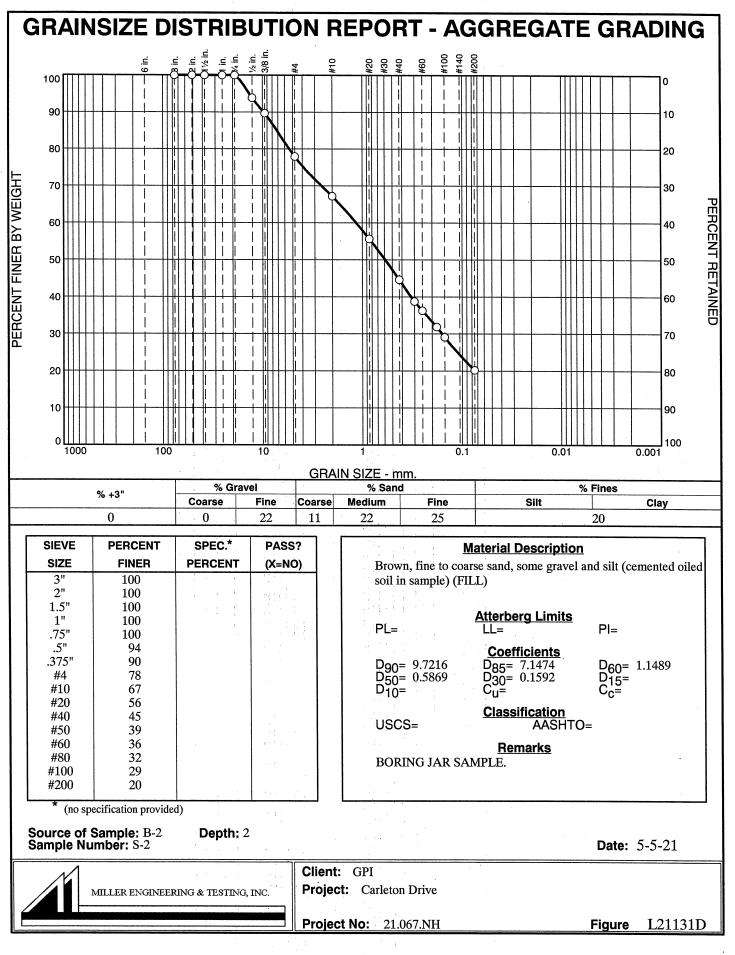
		MILLER	ENGINEERIN	G & TE	ESTING	, INC.	Pı	roject:			Carleton Dri Georgetown, 1		Sheet Boring No:	<u>1</u> of <u>1</u> B-6
							Proje	ct No:			21.067.NH	[Location:	See Plan
			eld Road - Ma				Date	Start:			04-29-21			
	۲ ا	n. (603) 6	568-6016 - Fax:	(603) (068-864	41	Dat	e End:			04-29-21		Approx. Sur	face Elev:
								_				WATER OBSE		
		(CASING		SA	MPLER	2		Date		Depth	Casing At		ization Period
Туре			HSA			SS			04-29-21		6'	8'	Upo	n Completion
Size		2	2-1/4" ID			3/8" ID		_						
Hamme	r				1	40 lbs.								
Fall			SAMPLE	,		30"	RI (ows						
Depth/ Elev.	Cas bl/f		Depth		D	0-6''			10 041	Strata Chang		Sample	Description	Notes
0		No.	Range	Pen.	Rec.	0-6**	6-12"	12-18	" 18-24"	Chang				Z
	_	-	0.0-0.3	4							-: 4" Aspha			
-		S-1	0.5-2.0	18	10		25	23	21		S-1: Brown (FILL)	ı, fine to coarse s	and, some grav	el, trace silt
2		S-2	2.0-4.0	24	12	17	17	22	21		S-2: Dark t and silt (FI	prown/brown, fin LL)	e to coarse sand	d, some gravel
- 4 -		S-3	4.0-5.0	12	6	8	3 S-3: Dark brown/brown, fine to coarse sand, some gr and silt (FILL)						l, some gravel	
-		S-3A	5.0-6.0	12	6			3	2		S-3A: Dark	t brown, organic	silt, little fine s	and (peat)
		S-4	6.0-8.0	24	8	3	3	11	19		S-4: Brown	n, fine to medium	a sand, some gra	avel and silt
												BORING TER	MINATED AT	8 ft
10 — - - 12 —														
	r: tor:	R. Marcoux J. Donahue COHESIVE CONSIST CONTROL 0-2 VERY SOFT C-4 S						/Foot)			COHESIONL 0-4 VERY L0 4-10 LOOSE 10-30 MEDII 30-50 DENSI 50+ VERY D	UM DENSE		PROPORTIONS USED TRACE: 0-10% LITTLE: 10-20% SOME: 20-35% AND: 35-50%
NOTE REMA		THE STRAT WATER LE FLUCTUAT	TIFICATION LINES RI VEL READINGS HAV TIONS IN THE LEVEL	T THE APP IADE IN T GROUNDW	ROXIMAT HE DRILL ATER MA	'E BOUND HOLES A' Y OCCUR	ARY BE T TIMES DUE TC	TWEEN SC AND UND OTHER FA	DIL TYPES ER COND ACTORS T	TRANSITION 1 ITIONS STATEI HAN THOSE PR	MAY BE GRADUAL.) ON THE BORING I ESENT AT THE TIM	LOGS. IE MEASUREMEN	TS WERE MADE.	

							Pr	oject:			Carleton Dri			<u>1</u> of _	1
		MILLEF	RENGINEERIN	IG & TI	ESTING	, INC.				G	eorgetown, l		Boring No: _]	3-7	
							Proje	ct No:			21.067.NH	[Location:	See Plan	
			ield Road - Ma		-		Date	Start:			04-29-21				
		h. (603) (668-6016 - Fax	:: (603)	668-86	41	Date	e End:			04-29-21		Approx. Sur	face Elev:	
											GROUND	WATER OBSE	RVATIONS		
			CASING		SA	MPLER	٤		Date		Depth	Casing At	Stabil	ization Period	
Туре			HSA			SS		0)4-29-21		None	6'	Upor	n Completion	
Size			2-1/4" ID		1.	-3/8" ID									
Hamn	ner				1	40 lbs.									
Fall						30"					1				
Dept	h/ Ca	s	SAMPL	E	1		BLC	OWS	1	Strata		Complet	Decomintion		Notes
Elev	. bl/f	t Sample No.	Depth Range	Pen.	Rec.	0-6''	6-12"	12-18''	18-24''	Change		Sample	Description		²
0			0.0-0.2	2.5							-: 2.5" Asp				
		S-1	0.3-2.0	20	9	4/2"	3/2"	35	34		S-1: Brown (FILL)	n, fine to coarse s	and, some grav	el, little silt	
											(I ILL)				
2 -		S-2	2.0-3.5	18	9	28	25	23			S-2: Brown	, fine to coarse s	and, some grav	el, little silt (1.5	"
-									layer of cei	mented oiled soil	in middle of sa	mple) (FILL)			
		S-2A	3.5-4.0	6	6				19		S-2A: Olive/brown (mottled), fine to medium sand, some silt, little gravel				
4-		S-3	4.0-6.0	24	8	6	7	9	13			n, fine to coarse s	and, some silt a	nd gravel	-
6	_											BORING TERM	MINATED AT	6 ft	-
8-															
10 —															
12 —															
Drill	er:	R. Marcou	 1X		IESIVE CO) NSISTEN	CY (Blowe	/Foot)			COHESION	ESS (Blows/Foot)		PROPORTIONS I	
Help	er:	J. Donahu T. Young		0-2	VERY SO		51 (B10WS)				0-4 VERY LO 4-10 LOOSE	DOSE		TRACE: 0-10% LITTLE: 10-20%	
		1. Loung		4-8 8-1	5 STIFF	STIFF					10-30 MEDI 30-50 DENS	UM DENSE E		SOME: 20-35% AND: 35-50%	
NOT	TES:			15-	-30 HARD						50+ VERY D	DENSE			
REN	IARKS	THE STRA	TIFICATION LINES F	REPRESEN	T THE APP	ROXIMAT	E BOUND	ARY BET	WEEN SO	IL TYPES	TRANSITION	MAY BE GRADUAL.			
		WATER LI	EVEL READINGS HA TIONS IN THE LEVEI	VE BEEN N	MADE IN T	HE DRILL	HOLES AT	Γ TIMES Δ	AND UNDI	ER CONDI'	TIONS STATEI) ON THE BORING L	.OGS.	IS WERE MADE.	

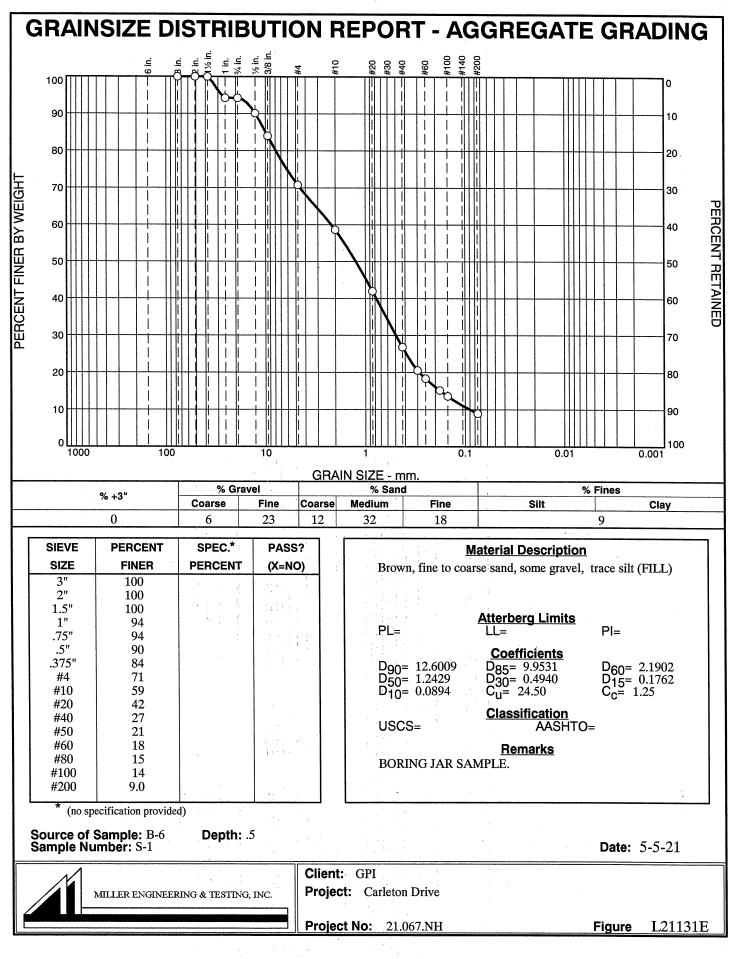

Λ	1						Pı	oject:			Carleton Dri		Sheet	01 _	1
		MILLEF	<u>R ENGINEERIN</u>	G & TI	ESTING	, INC.				G	eorgetown, l		Boring No: B	-8	
							Proje	ct No:			21.067.NH	[Location:	See Plan	
			field Road - Ma				Date	Start:			04-29-21				
	P	n. (603)	668-6016 - Fax	: (603)	668-864	41	Date	e End:			04-29-21		Approx. Surfa	ace Elev:	
				_							GROUND	WATER OBSE	RVATIONS		
			CASING		SA	MPLER	2		Date		Depth	Casing At	Stabili	zation Period	
Туре			HSA			SS		()4-29-21		None	6'	Upon	Completion	
Size			2-1/4" ID		1-	-3/8" ID									
Hammer					1	40 lbs.									
Fall						30"					Ι				
Depth/	Cas		SAMPLE Depth	2			BLC		1	Strata		Sample	Description		Notes
Elev.	bl/ft	No.	Range	Pen.	Rec.	0-6''	6-12"	12-18"	18-24''	Change	•	Sample	Description		Ž
0			0.0-0.2	2.5							-: 2.5" Asp	halt			
		S-1	0.5-1.0	6	2		25					n, fine to coarse s	and, some crush	ed gravel, little	
		S-1A	1.0-2.0	12	7			26	29		silt (FILL)	vn, fine to coarse	sand some ara	vel trace silt	(1)
		5	110 210								D IIIIIIIIIIIII	wit, fille to course	sand, some gra	ver, trace sitt	
2 -		S-2	2.0-3.5	18	10	31	28	26			S-2: Brown	n, fine to coarse s mented oiled soil	and, some grave	l, little silt (2"	(2)
-											layer of cer	nemed oned son	In middle of sar	ipie) (FILL)	
-															
		S-2A	3.5-4.0	6	3				15		S-2A: Brov (FILL)	wn, fine to mediu	im sand, some si	lt, little gravel	
4-		S-3	4.0-6.0	24	16	2	2	1	3		S-3: Dark b	prown, organic si	lt, some fine san	d, trace fine	1
											organic roo	ots (peat)			
6-												BORING TER	MINATED AT (5 ft	1
-															
8 —															
-															
10 —															
1															
12 —															
Driller	: 1	R. Marcou	ux	COF	IESIVE CO	 INSISTEN	CY (Blows	/Foot)			COHESION	ESS (Blows/Foot)		PROPORTIONS U	USED
Helper	:	J. Donahu F. Young	ie	0-2	VERY SOI						0-4 VERY L 4-10 LOOSE	DOSE		TRACE: 0-10% LITTLE: 10-20%	
Inspect		. roung		4-8 8-1	5 STIFF	STIFF					10-30 MEDI 30-50 DENS	UM DENSE E		SOME: 20-35% AND: 35-50%	
NOTES	S: ((1) Rock i	in tip of split-spoor		-30 HARD						50+ VERY D	DENSE			
			er of asphalt in mic		ample.										
REMA	RKS:	THE STRA	ATIFICATION LINES R	EPRESEN	T THE APP	ROXJMAT	E BOUND	ARY BET	WEEN SO	IL TYPES	TRANSITION	MAY BE GRADUAL			
		WATER L FLUCTUA	ATIFICATION LINES R EVEL READINGS HAV ATIONS IN THE LEVEL	E BEEN N	MADE IN T	HE DRILL	HOLES A' Y OCCUR	T TIMES DUE TO	AND UNDI OTHER FA	ER CONDI	TIONS STATEI	O ON THE BORING I	LOGS. <u>1E MEASUREMENT</u>	S WERE MADE.	

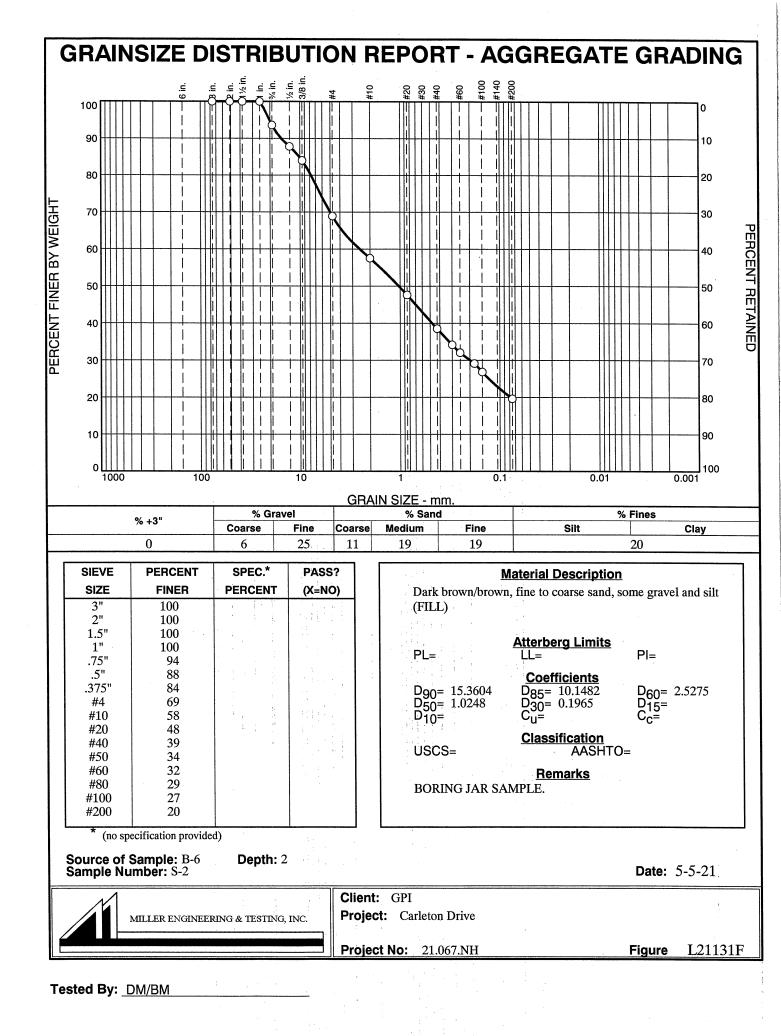

								roject:			Carleton Dri eorgetown, l		Sheet <u>1</u> of <u>1</u> Boring No: B-9			
MILLER ENGINEERING & TESTING, INC.								ct No:		0	21.067.NH		Location:	See Pl	an	
100 Sheffield Road - Manchester, NH 03103								Start:			04-29-21		Location:	566 PI		
Ph. (603) 668-6016 - Fax: (603) 668-8641								e End:			04-29-21	rface Flore				
											GROUNDWATER OBSERVATIONS					
CASING				SA	MPLER	Date				Depth			Stabilization Period			
Tune	Type HSA				5A	SS	•		04-29-21		DepthCasing At6'6'					
Size 2-1/4" ID					1	3/8" ID			J4-29-21		0	0		Upon Completion		
Hammer																
Fall						40 lbs.										
Fall	Fail SAMPLE					30	BI (ows	s							
Depth/ Elev.	Cas bl/ft	Sample			_					Strata		Sample	Description		Notes	
	DI/IU	No.	Range	Pen.	Rec.	0-6''	6-12"	12-18"	18-24	Change		_	-		Z	
0		-	0.0-0.4	4.5							-: 4.5" Asp				(1)	
-		S-1	0.4-2.0	19	6	2/1"	37	23	17		S-1: Brown, fine to coarse sand, some gravel, little silt (FILL)					
2 —		S-2 2.0-2.5 6 4 10									S-2: Brown, fine to coarse sand, some gravel, little silt (FILL)					
-		S-2A	2.5-4.0	18	10		4	3	3		S-2A: Orar	nge brown, silt				
4		S-3	4.0-6.0	24	6	2	1	3	10		S-3: Brown	ı, fine sand, some	e silt, trace gra	avel	(2)	
-6												BORING TER	MINATED A	T 6 ft		
12 - Driller: Helper: Inspecto	ы J or: Т			0-2 2-4 4-8 8-1 15- f sample		FT STIFF	-	/Foot)			COHESIONL 0-4 VERY L(4-10 LOOSE 10-30 MEDI 30-50 DENSI 50+ VERY D	UM DENSE		PROPORTION TRACE: 0-10 LITTLE: 10-2 SOME: 20-35 AND: 35-50%	1% 20% 5%	
REMA	RKS:	WATER LE	TIFICATION LINES R EVEL READINGS HA TIONS IN THE LEVEI	VE BEEN M	MADE IN TI	HE DRILL	HOLES A'	T TIMES .	AND UNDI	ER CONDI	TIONS STATEL) ON THE BORING L	OGS. E MEASUREME	ENTS WERE MADE	3.	

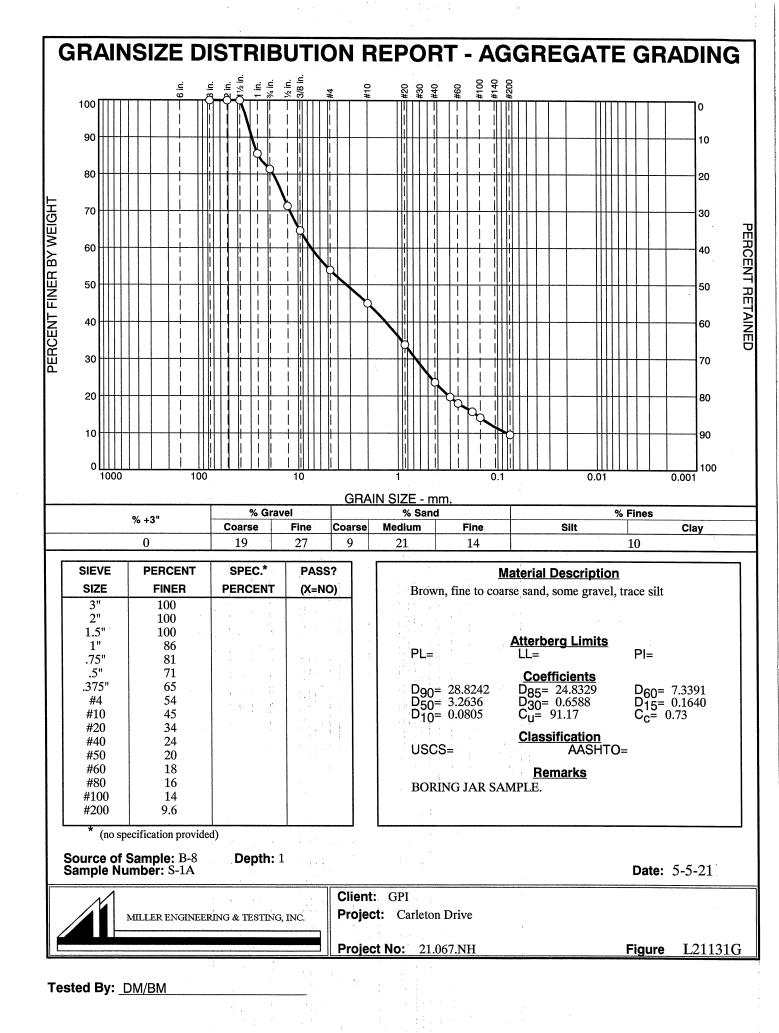

1	M							roject:			Carleton Dri		Sheet		of _	1
MILLER ENGINEERING & TESTING, INC										G	eorgetown,		Boring No: <u>B-10</u>			
								ct No:			21.067.NH	[Location: See Plan			
100 Sheffield Road - Manchester, NH 03103								Start:			04-29-21					
Ph. (603) 668-6016 - Fax: (603) 668-8641								e End:			04-29-21		Approx. Surface Elev:			
											GROUND	WATER OBSE	RVATIO	NS		
CASING					SA	MPLE	٤		Date		Depth Casing At		Stabilization Period			
Туре	Type HSA					SS		()4-29-21		5'	6'		Upon Completion		
Size 2-1/4" ID					1-	-3/8" ID										
Hammer					1	40 lbs.										
Fall						30"					1					
Depth/	Cas	SAMPLE					BLO	ows	1	Strata		<i>a</i> .				fes
Elev.	bl/ft	SampleDepthNo.Range		Pen.	Rec.	0-6''	6-12''	12-18''	18-24''		•	Sample	Descriptio	n		Notes
0		- 0.0-0.3									-: 4" Aspha	alt				\vdash
-		S-1 0.3-2.0 20 9 10/						23	20			n, fine to coarse s	and, some	gravel, little	silt	1
											(FILL)					
-																
-2		S-2	2.0-4.0	24	4	17	7	5	6		S-2. Brown	n, fine to medium	sand som	e silt_little ø	ravel	-
		52	2.0 1.0	2.							(FILL)	i, inic to incurum	bund, som	e sint, inthe g	,iuvei	
-																
4-			10.15									<u>.</u>				4
		S-3	4.0-4.5	6	4	5					S-3: Dark brown, fine to medium sand, some silt, little gravel				ittle	
		S-3A	4.5-6.0	18	7		6	7	11		S-3A: Brown, fine to coarse sand, some gravel, trace s					(1)
-											wet					
-																
6-																
0												BORING TER	MINATED	AT 6 ft		
-																
-																
8-																
-																
10 -																
12 —																
Driller	 · ·	R. Marcou						(F 1)			COLIEGION	F66 (Di 75		PROPO	DTIONG	
Helper	: J	I. Donahu		0-2	ESIVE CO		CY (Blows	/F 00t)			0-4 VERY L			TRAC	RTIONS U E: 0-10%	SED
Inspec	tor:	Г. Young		4-8	SOFT MEDIUM	STIFF					4-10 LOOSE 10-30 MEDI 20 50 DENS	UM DENSE		SOME	E: 10-20%	
NOTE	c. /	(1) Poole f	ragments in tin of		5 STIFF -30 HARD						30-50 DENS 50+ VERY I	DENSE		AND:	35-50%	
NOTE	э. (I) ROCK I	ragments in tip of	spiit spc	011.											
	DVIC															
REMA	RKS:	WATER LI	TIFICATION LINES R EVEL READINGS HAY	VE BEEN N	MADE IN T	'HE DRILL	HOLES A	T TIMES .	AND UND	ER CONDI	TIONS STATEI	O ON THE BORING I	JOGS.	MENTO WENT	MADE	
L		FLUCTUA	TIONS IN THE LEVEI	OF THE (JKUUNDW	ALEK MA	T UCCUR	DUE TO	UTHER FA	ACTORS TI	DAIN THUSE PH	CESENT AT THE TIM	IE MEASURE	MENTS WERE	MADE.	

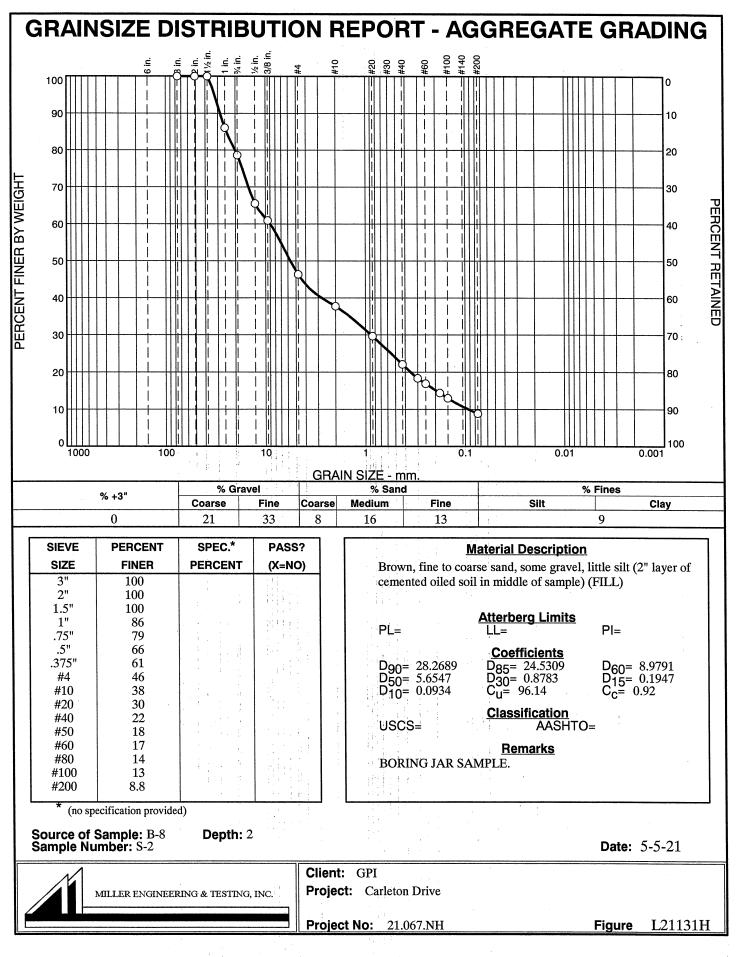

1	1				Project:				Carleton Dri	ve	Sheet	of	1		
MILLER ENGINEERING & TESTING, INC								G				MA	Boring No:	B-11	
								ct No:			21.067.NH	[Location:	See Pla	n
100 Sheffield Road - Manchester, NH 03103								Start:			04-29-21				
	Pł	n. (603)	668-6016 - Fax	(603)	668-864	41	Date	e End:			04-29-21		Approx. Su	ırface Elev:	
											GROUND	WATER OBSE	RVATIONS		
	CASING SAM				MPLER	Ł		Date		Depth	Casing At	bilization Period			
Туре	Type HSA					SS		0	04-29-21		5'	6'	Upon Completion		
Size 2-1/4" ID					1-	3/8" ID									
Hammer					1	40 lbs.									
Fall	Fall					30"									
Depth/	Cas		SAMPLE	2	1		BLC	ows	1	Strata					es
Elev.	bl/ft	Sample No.	Depth Range	Pen.	Rec.	0-6''	6-12" 1	12-18''	18-24''	Change		Sample	Description		Notes
0		-	0.0-0.3	3							-: 3" Asphalt				+
		S-1 0.4-1.0 7 7				3/1"	15				S-1: Brown	n, fine to coarse s	and, some gra	avel, little silt	
											(FILL)				
		S-1A	1.0-2.0	12	3			15	13		S-1A: Brov	wn, fine to mediu	m sand, some	e silt, little gravel	
2 —		S-2	2.0-4.0	24	24 12 8			9	17		S-2: Brown, fine to medium sand, some silt, little grav				(1)
-															
4		S-3	4.0-6.0	24	13	13	12	12	14		S-3: Brown	n, fine to coarse s	and, little gra	vel, trace silt, we	t
-															
6-												BORING TER	MINATED A	T 6 ft	-
-															
8 —															
-															
10 -															
-															
12 -															
Desiller	<u> </u>	D Morror				NOTOTOT		/F()			CONFERENCE	FOS (DI 75		BROBOBATONA	
Driller Helper	: J	R. Marcou I. Donahu	e	0-2	IESIVE CO 2 VERY SO		CY (Blows	/Foot)			0-4 VERY L			PROPORTIONS TRACE: 0-10%	,
Inspect	or:	Г. Young		4-8	SOFT MEDIUM	STIFF					4-10 LOOSE 10-30 MEDI 30 50 DENS	UM DENSE		LITTLE: 10-209 SOME: 20-35%	%
NOTE	S • (1) Rock :	n tip of split-spoor	15-	15 STIFF -30 HARD						30-50 DENS 50+ VERY I	DENSE		AND: 35-50%	
	5. (I) KUCK I	n up or spin-spoor	ι.											
DEM	DEC														
KEMA	KKS:	THE STRA WATER LI	ATIFICATION LINES R EVEL READINGS HAV TIONS IN THE LEVEL	EPRESEN E BEEN N	T THE APP MADE IN T TROUNDW	ROXIMAT HE DRILL	E BOUND HOLES A	ARY BET	WEEN SO	IL TYPES. ER CONDI CTOPS 75	TRANSITION	MAY BE GRADUAL. O ON THE BORING I RESENT AT THE TIM	JOGS. 16 MEASUREME	NTS WERE MADE	
		TLUCIUA	TOTO IN THE LEVEL	OF THE C	SKOUNDW	ATER MA	LUCUK	ידוים	OTHER FA		AND THOSE PR	LOLIVI AT THE HIV	L MLASUKEME	ATTO THERE MADE.	

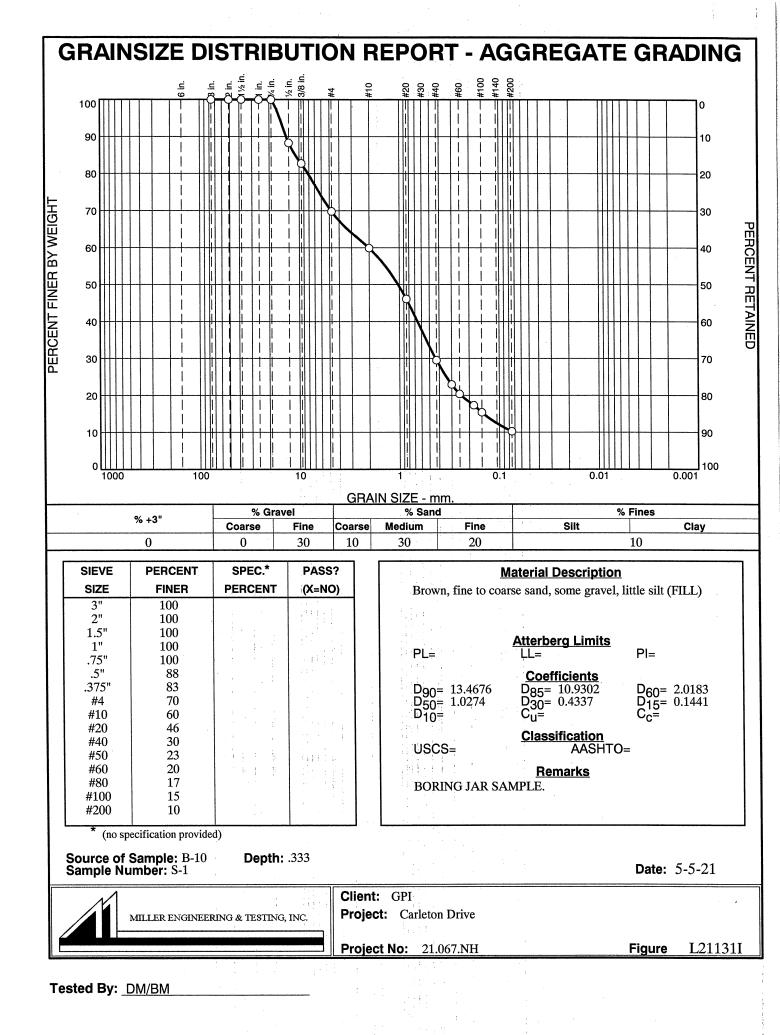
Appendix C

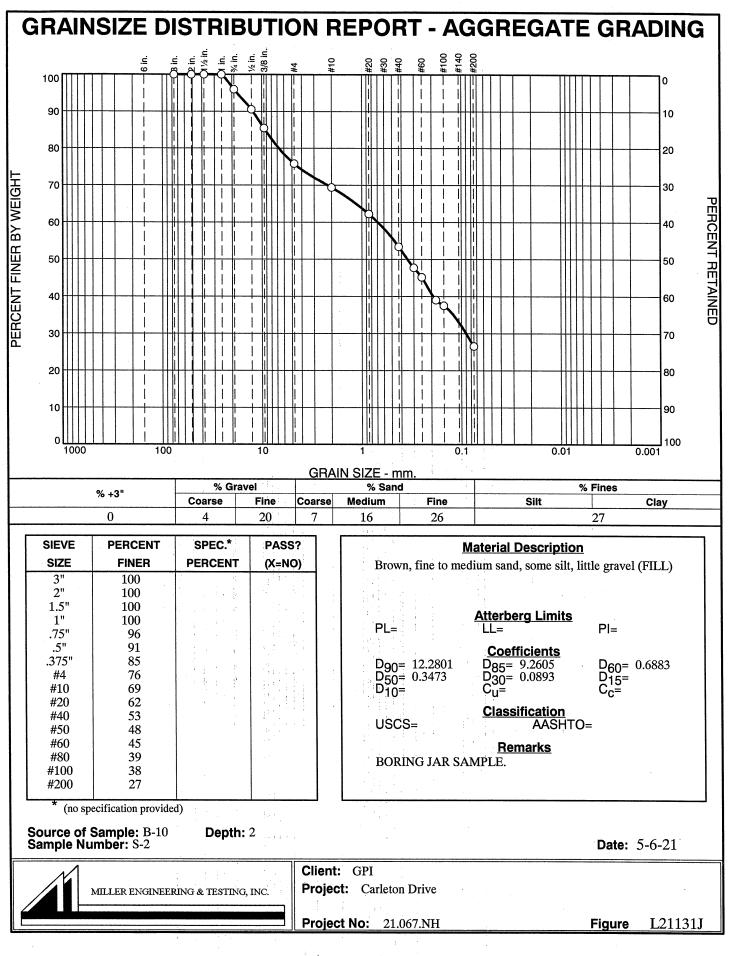







Tested By: DM/BM


Tested By: DM/BM



Tested By: DM/BM

Tested By: DM/BM

Appendix D

	Project In	formation:	
Project Name:	Carleton Road	Project No.:	21.081.NH
Location: G	eorgetown, MA	Calculated by:	GNG
Client:	GPI	Date:	5/12/2021
Performance Period (years): Initital Serviciability (P _o): Terminal Servicibility (P _t):	20 4.5	formation: Reliability % (R): Overall Standard Dev. (So):	90 0.5
Servicibility Loss ($\Delta PSI = (P_o - P_t)$:			
Subgrade Soil Description:	Brown, fine to med sand, little to some si little to some gravel (FILL)	ilt,	
Resilient Modulus (M _R):	<u>4500</u> psi	M _R Estimated:	YES
California Bearing Ratio (CBR):		CBR Estimated:	Y / N
-	Pavement Section	Heavy Duty Pave	ment Section
Design ESAL: Asphalt Wearing Course:		Design ESAL: Asphalt Wearing Course:	2.0 in
Asphalt Binder Course:		Asphalt Binder Course:	3.0 in
Base Course:		Base Course:	12.0 in
Subbase Course		Subbase Course	
or Existing Subgrade:	12.0 in	or Existing Subgrade:	20.0 in
		ad Pavem	ent Figure No.:
	Carleton Ro		
MILLER ENGINEERING & TESTING, INC.	Georgetown,	MA Desig	gn P1
MILLER ENGINEERING & TERTING, INC.		MA Desig H Section	gn P1

0.0004

per car

0.879

per truck

1.722

per truck

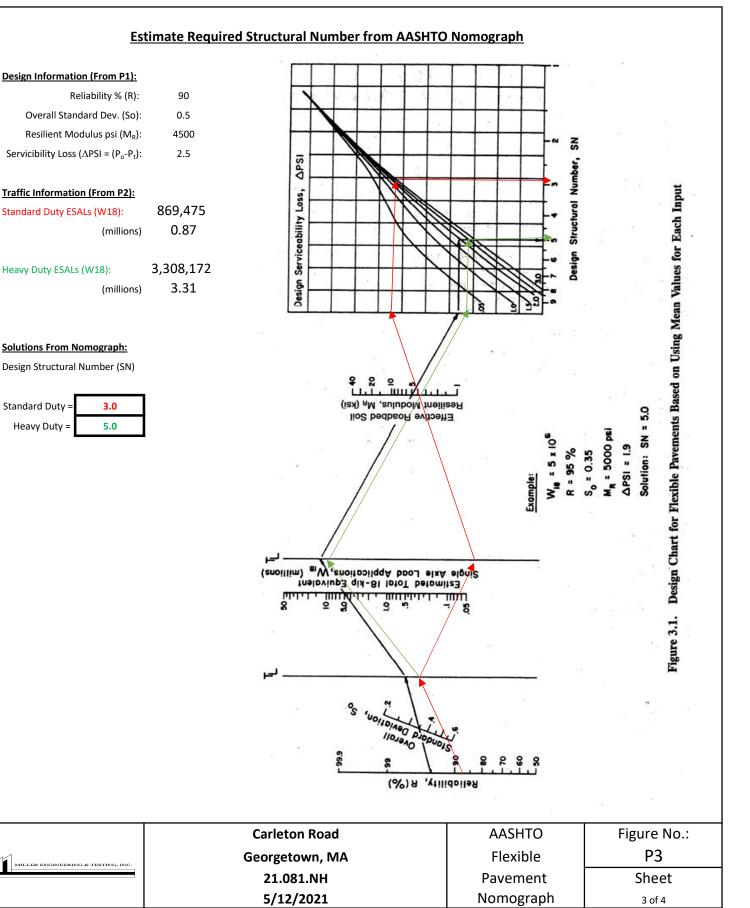
Flexible Pavement Design Evaluation Calculate Equivalent 18-Kip Single Aexl Loading (ESALs) $P_t = 2$ Equivalent Single Axel Loads per Vehicle: SN = 3Typical Passenger Vehicle: **Description** Axel Load (kip) Axel Type Load Equivalency Factor Calculated ESALs (1 Axel)(0.0002)+(1 Axel)(0.0002) = (S) Front Single Axel 2 LEF = 0.0002 (S) 2 Rear Single Axel LEF = 0.0002 Typical Light Duty Truck (H20): Axel Load (kip) Axel Type Description Load Equivalency Factor Calculated ESALs (1 Axel)(0.036)+(1 Axel)(0.843) = 8 LEF = (S) Front Single Axel 0.036 (T) **Rear Single Axel** 32 LEF = 0.843 Typical Trailer Truck (HS20): Axel Type Description Axel Load (kip) Load Equivalency Factor Calculated ESALs (S) Front Single Axel 8 LEF = 0.036 (1 Axel)(0.036)+2(1 Axel)(0.843)= LEF = (T) **Rear Single Axel** 32 0.843 Trailer Axel 32 LEF = 0.843 (T) (S) = Single Avel, (T) = Tandem Axel, (3)=Tripple Axel **Traffic Loading Calculations:** Performance Period = 20 years Standard Duty Pavement Section ESALs Vehicle Type **Current Traffic** Growth Factor **Design Traffic ESAL** Factor Design ESAL No Growth **Passenger Vehicle** 1103 20.00 8,051,900 0.0004 3,221 No Growth Light Trucks 135 20.00 985,500 0.879 866,255 869,475 Standard Duty ESALs = Heavy Duty Pavement Section ESALs Design ESAL Vehicle Type **Current Traffic Growth Factor** Design Traffic **ESAL** Factor No Growth Passenger Vehicle 1103 20.00 8,051,900 0.0004 3,221 No Growth 135 20.00 985,500 0.879 866,255 **Light Trucks**

Heavy Duty ESALs = 3,308,172

1.722

2,438,696

1,416,200


	Carleton Road	EASLs	Figure No.:
MILLER ENGINEERING & TESTING, INC.	Georgetown, MA	Calculations	P2
	21.081.NH		Sheet
	5/12/2021		2 of 4

No Growth

20.00

194

Heavy Trucks

Flexible Pavement Section Design

Structural Number (SN) = $D_1(a_1)+D_2(a_2)(m_2)+D_3(a_3)(m_3)$

Material Properties:		Layer Properties		
	Layer (ID) Strength Coef. Drain		Drainage Coef.	
Material	(D)	(a)	(m)	
Asphalt Wearing Course	1	0.44	-	
Asphalt Binder Course	1	0.44	-	
Base Course	2	0.12	1.00	
Subbase Course	3	0.08	0.90	

Standard Duty Pavement Section Design:

		Thickness	Layer	Structural
Material	Spec	(Inches)	Strength	Number (SN)
Asphalt Wearing Course	12.5mm Superpave Surface Course	1.5	0.44	0.66
	MHD Mix SSC - 12.5			
Asphalt Binder Course	19.0mm Superpave Intermediate Course	2.0	0.44	0.88
	MHD Mix SIC - 190			
Base Course	Dense Graded Crushed Gravel	6.0	0.12	0.72
	MHD Item M1.03.1			
Subbase Course	Existing Silty Gravel Subgrade	12.0	0.08	0.864
	or Reclaimed Pavement Borrow (M1.09.0)			

Design Structural Number for Section = 3.12

Required Structural Number for Traffic = 3.00

Check Design SN \geq Required SN = OK

Heavy Duty Pavement Section Design:

		Thickness	Layer	Structural
Material	Spec	(Inches)	Strength	Number (SN)
Asphalt Wearing Course	12.5mm Superpave Surface Course	2.0	0.44	0.88
	MHD Mix SSC - 12.5			
Asphalt Binder Course	19.0mm Superpave Intermediate Course	3.0	0.44	1.32
	MHD Mix SIC - 190			
Base Course	Dense Graded Crushed Gravel	12.0	0.12	1.44
	MHD Item M1.03.1			
Subbase Course	Existing Silty Gravel Subgrade	20.0	0.08	1.44
	or Reclaimed Pavement Borrow (M1.09.0)			

Design Structural Number for Section = 5.08

Required Structural Number for Traffic = 5.00

 $\label{eq:check Design SN } \mathsf{N} \geq \mathsf{Required SN} = \mathsf{OK}$

	Carleton Road	Flexible	Figure No.:
MILLER ENGINEERING & TESTING, INC.	Georgetown, MA	Pavement Section	P4
	21.081.NH	Calculation	Sheet
	5/12/2021		4 of 4